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Energy Sustainability

“‘Sustainable development is development that meets the
needs of the present without compromising the ability of future
generations to meet their own needs”

— UN, Our Common Future, 1987

Energy sustainability challenges:
« Economic development

« Resource availability

« Air pollution

* Mining and drilling

« Water consumption

- Climate change
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Global Carbon Emissions
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The Atmospheric Bathtub

9 GtC/yr

4 GtC/yr

A useful analogy is filling a bathtub at a faster rate than you can
drain it.



Keeling Curve: Measured CO, Concentration (Mauna Loa, Hawaii)

Latest CO2 reading 402 72
August 11, 2016 . ppl 1]
Carbon dioxide concentration at Mauna Loa Observatory
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The “greenhouse effect”
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Impacts from Climate Change

Average temperature change can be a misleading indicator of impact:
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If temperature change exceeds 1.5-2.5°C, approximately 20-30% of
known species will be at increasing risk of extinction (IPCC medium

confidence).

Populations with low adaptive capacity and/or that live in coastal areas

are at greatest risk of climate impacts.
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Impacts Versus Temp Change
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U.S. National Security Implications

Department of Defense, 2015: Report on National Security
Implications of Climate-Related Risks and a Changing Climate
http://archive.defense.gov/pubs/150724-congressional-report-on-
national-implications-of-climate-change.pdf

“Global climate change will aggravate problems such as poverty,
social tensions, environmental degradation, ineffectual leadership
and weak political institutions that threaten stability in a number of

countries”

“It is in this context that the department must consider the effects
of climate change -- such as sea level rise, shifting climate zones
and more frequent and intense severe weather events -- and how
these effects could impact national security.”


http://archive.defense.gov/pubs/150724-congressional-report-on-national-implications-of-climate-change.pdf

Energy Implications of Climate Change
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The Cost of Carbon Abatement

Abatement cost
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Global and U.S. Electricity in 2014

* Global electricity production: 23,816 TWh (P, =2.7 TW)
— U.S. electricity production: 4,100 TWh (P.., = 0.47 TW)

avg

* US CO, emissions: 5,411 million metric tons
* US CO, electricity emissions: 2,050 million metric tons (~40%)
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More than 1000 55 kW NEG
Micon turbines at Palm Springs

Picture: Danish Wind Industry
Association

Wind turbine towers are
usually one to one-and-a-
half the rotor’s diameter
in height

MIT, Sustainable Energy, p. 629
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Wind Turbines

GE 3.6 MW turbine in Spain
Rotor diameter: 104 m
Hub height: ~100 m

Picture: GE




Solar Photovoltaics
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A Shift in Design Paradigm?

Today

Tomorrow?

Source: EPRI (2011) Estimating the Costs and Benefits of the Smart Grid. Palo Alto, CA.



What kind of a system do we want?

Highly Centralized

Advantages

* Wider array of technologies in the portfolio

* Allows for economies of scale, leading to lower levelized cost
e Can reduce NIMBYism by placing in remote areas

e Enable capacity sharing across wide geographic areas



What kind of a system do we want?

Highly Decentralized

Residential
120/240 VAC and
380VDC

Advantages:

* Higher resilience to damage from storms, sabotage, conflict
* Greater consumer control over electricity

* Less dedicated land and water required for generation

* Motivate social capital and cohesion

* Lower financial risks



The Case for Distributed Energy

Cities offer an opportunity to rapidly deploy distributed energy
resources in dense electricity networks.

* Approximately 54% of global population lives in urban areas

* Cities responsible for 60-70% of anthropogenic greenhouse gas
emissions

e Two-thirds of world’s population projected to live in urban
areas by 2050 = net influx of 2.5 billion people

* Roughly 75% of electricity generated is consumed in cities

But how well do the power densities associated with renewables
match power requirements in cities?

Data drawn from: Kammen D, Sunter DA, 2016. City-integrated renewable energy for urban
sustainability. Science, 352(6288): 922-928.



Matching Renewable Supply and Demand
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Load

The Challenge with Renewable Electricity

System operators must balance supply and demand in real time.
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Smart Grids

So not simply a matter of injecting renewable electricity into the grid 2>
requires careful management

Smart Grid integrates traditional upgrades and new grid technologies with
renewable generation, storage, increased consumer participation, sensors,
communications and computational ability.

Features:

* Two-way flow of electricity and info between utilities and consumers
* Real-time information

* Near-instantaneous balance of supply and demand at the device level

Shift paradigm by using technology to better shape demand to fit variable
supply without degrading system performance. Benefits include:

e Greater consumer participation and awareness

e Enhanced system reliability

* Higher deployments of renewables

Source: EPRI (2011): Estimating the Costs and Benefits of the Smart Grid. Palo Alto, CA.



Smart Grid Elements

Smart Bullding Technology including web portais and in-home dispiays will —— Greener Energy Sources are move readly integrated
aventually allow customers to track their energy use and give tham the tools into the smart distribution grid.
to change their energy-using habits.

Intelligent Underground Systems use
sophisticated communication technalogy
o monitor, isolate, and correct problems

and improve reliability.

Plug-in Electric Cars

: can connect 1o the grd
to charge and one day

P may even provide power

from their battery packs
whent the cars are not
in use.

e —

Smart Meters gather information about customers' energy Use Customer Energy Generators
s customers can use electricity more afficiantly, and the meters enhance system reliability.
may enable the utiity to identify system problems.




Where does the FREEDM Center come in?

We need enabling technology to make it work.

Vision is to build an internet for energy: a network of distributed energy
resources that intelligently manages power using secure communications
and advanced power electronics.

Research priorities:

* Power electronics packaging

Solid state transformers

Fault isolation devices

Controls theory

Power systems simulation and demonstration

Many other technologies will play a supporting role including battery
storage, smart thermostats, real-time use monitors and apps.



NCSU FREEDM Center FID = Fault Interruption Device

Estimated primary distribution services: 1.0 MVA / 25 SST = Solid State Transformer
kVA = 40 sites. About 3 households per site/25kvA ssT. DRER = Distributed Renewable Energy Device
Logal controls per site: ahout 3~ 6. DESD = Distributed Energy Storage Device

.

Capable of operation with
energy from the grid

1 MVA
SST

supply, orin islanded mode
using only stored energy

FID ~—FiD and distributed resources.




Summary

Fundamental changes will be required in global electricity
supply to mitigate climate change

Key tradeoffs between centralized and decentralized
systems

Solutions will likely differ by geographically

Long-term viability of smart grid will be determined by its
cost and performance relative to different alternatives

Future smart grids integrated into urban environments are
compelling, but are by no means guaranteed -2 it will take
innovation to make it happen!
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