Solid State Transformer and FREEDM System Power Management Strategies

Prof. Alex Q. Huang, Progress Energy Distinguished Professor NSF FREEDM Systems Center NC State University

NC STATE UNIVERSITY

Presentation Outline

- 1. FREEDM System: A Resilient and Smart Distribution System
- 2. Solid State Transformer
 - Three Generations of FREEDM Developed SST Technology
- 3. Advanced Power Management Functions of the SST
- 4. FREEDM System Intelligent Power Management (IPM) Control
- 5. Towards Energy Internet

Low Voltage Power Delivery System at the Edge of ICT: Power Electronics Impact in the last 50 Years

1980: power MOSFET

High Voltage and Medium Voltage Power Delivery System: Grid Edge Control Challenge

- Designed for unidirectional power flow and century-old transformer technology with little controllability beyond substation
- Requires a wide spectrum of products for power quality improvement (SVC, active filter, voltage compensator, DVR, etc.)
- Strong coupling and won't isolate harmonics/other disturbances
- Not friendly for integration of renewable energy source (DC-typed sources need more conversion stages, synchronization), EV, electronic load

[1] Electricity grid simple- North America" by United States Department of Energy, SVG version by User:J Jmesserly http://www.ferc.gov/industries/electric/indus-act/reliability/blackout/ch1-3.pdf Page 13 Title:"Final Report on the August 14, 2003 Blackout in the United States and Canada" Dated April 2004. Accessed on 2010-12-25. Licensed under Public domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Electricity_grid_simple-_North_America.svg#mediaviewer/File:Electricity_grid_simple-_North_America.svg

Direct medium voltage power conversion

Addressing climate change grand challenge: higher penetration of distributed generation/storage/renewable hence the need for better control (µs~hour) Load **Direct medium voltage power conversion** [1] power conversion without 60 Hz transformer Smart functions for enhanced grid edge control Renewable Energy **MV DC** Generation 4160-69 kV (AC) Energy Storage < Front end AC/DC > LV DC (400V) Others Solid State Transformer LV AC Inverter 5

[1] Huang, NSF ERC proposal, 2007

FREEDM System Physical Architecture

Plug-and-play DC or AC Microgrid (Energy Cell)

SST for A Complete DC Grid

In this case SST is absolutely needed since there is no 60Hz DC Transformer 7

Medium Voltage (MV) SST Technical **Approach & Research Areas**

SST Grand Challenge: High Input Voltage

- 1968: Si bipolar transistor breakdown voltage is only ~100V
- Also the topology is not directly usable due to voltage overshoot etc

Three Stage Medium Voltage SST

SST Grand Challenge: High Input Voltage

Gen-I SST 6.5kV Si IGBT based

Input: 7.2kVac Output: 240Vac/120Vac; 400Vdc Power rating: 20kVA

Wang et. al, "Design and hardware implementation of Gen-1 silicon based solid state transformer," APEC 2011

WBG Material Advantages

SiC Capability

13

15kV SiC GTO, n-IGBT and MOSFET

SiC bipolar devices are more suitable for high temperature operation

15 kV SiC MOSFET Switching Losses

- Much lower switching loss compared with 6.5 kV IGBT;
- Up to 8 kHz even in hard switching condition.
- Turn-on loss can be eliminated in ZVS operation

Si Diode

15 kV SiC MOSFET Output Charge Measurement and Modeling

Half-Bridge Output Charge Measurement System

- △ Simple configuration
- △ High voltage (up to kV)
- △ High accuracy (<1% error)
- △ No special equipment needed

Output charge model :

 $Q_{oss}(V_{ds}) \approx 11.43\sqrt{V_{ds}} + 0.0406 \,(\text{nC})$

Three Stage SST with DAB Isolated DC-DC Converter

Gen-II SST Specifications:

- Input: 7.2kVac
- Output: 240Vac/120Vac; 400Vdc
- Power rating: 20kVA

Tested Condition:

- Input: 3.6kVac
- Output: 240Vac; 400Vdc
- Power rating: 10kVA

Measured Efficiency of Three Stage SST with DAB Isolated DC-DC Converter

Improved Three Stage SST with SRC Isolated DC-DC Converter

Gen-II SST Specifications:

- Input: 7.2kVac
- Output: 240Vac/120Vac; 400Vdc
- Power rating: 20kVA

Tested Condition:

- Input: 3.6kVac
- Output: 240Vac; 400Vdc
- Power rating: 10kVA

Medium Voltage Isolated DAB vs SRC

DC-DC Stage Efficiency

- Soft Switching Over Full Load range
- Improved medium frequency transformer design

Single Stage Medium Voltage SST

Single Stage Medium Voltage SST

Gen-III SST Specifications:

- Input: 7.2kVac
- Output: 280Vac
- Power rating: 20kVA

Tested Conditions:

- Input: 3.6kVac
- Output: 280Vac
- Power rating: 10kVA

Gen-III SST Major Achievement: Vin=4.2 kV AC, Po = 8kW

Gen-III SST Prototype (24inch*30inch*10inch)

4.2kV AC – 280V AC Experimental Waveforms @ 8kW

Three Generations of SSTs

- Gen-1 and Gen-2 features three stage solutions, and have all the desired smart functions
- Gen-3 is a single stage solution, the focus is on cost and efficiency

Three Generations of SST Measured Efficiency (MV AC- LV AC)

- Much higher efficiency through single stage, improved magnetics and soft switching
- 2% improvement compared to Gen-II SST, 7% over Gen-I
- Reached >97% for the MV AC-AC SST

Three Generations of SST Power Density Vs Efficiency

SST Winning Strategy for Smart Grid

Microsecond •Fault management •Current limiting •Disconnect/reconnect

•Power Management:

- 1. Control power factor/Var Injection
- 2. Change/Control customer voltage
- 3. Low voltage ride through
- 4. Eliminate customer side harmonics
- 5. Provide DC power/Forming DC Microgrid
- 6. Bidirectional Power flow control via Energy Cell aggregation
- 7. Supports advanced power managements and islanding modes
- •Energy Management •Monitor energy usage (AMI) •Can control/dispatch power via microgrids (Energy Cell) •Demand side management

Three Stage Medium Voltage SST: Supports Many Power Management Smart Features

Reactive power compensation: 3.6KV-120V, 5KW, 2KVar (Gen-I SST Result)

Capacitive mode operation

1. Grid Voltage Support Via Q injection

1: SST rectifier in diode mode (1.8kV distribution grid voltage)

- 2: SST starts with 1kW load
 - 3: Grid voltage drops 10%
 - 4: SST generates reactive power to restore Vpcc ³¹

2. Load regulation: : 3.6KV-120V, 5KW-3KW (Gen-I)

3. Smart Feature: Low Voltage Ride Through (LVRT)

4. Smart Feature: Load Harmonic Mitigation

2.0kY

200Y

Ch1

Ch3

Ω

Ch2

Ch4

1.0A

5.0A

M 4.0ms 125kS/s

A Ch1 / 0.0Y

8.0µs/pt

5.

- Grid voltage: 3.6kV
- MVDC link voltage: 6kV
- Low voltage dc output: regulated at 400V

A 6h4 1 300mA

Ch3

100Y

Ch4

5.0A

Ω

SST Power Flow Control: Control DC Bus Voltage As a Aggregation Signal

6.

SST and DC Microgrid Testbed

switch

Gen-I SST

500 w DC/DC Converter for battery

200 w DC/DC converter for PV

20Ah battery

LIB12350

120 W PV panel

PV converter

Key hardware parameters

Battery converter

L _{r_battery}	6 uH	I PV_MPPT	2.5 A	V _{PV_shedding}	395 V
L _{r_PV}	4 uH	f	50 kHz	V _{PV_back}	375 V
V _{battery}	48 V	Vò	380 V	$V_{\rm load_shedding}$	365 V
V _{PV_MPPT}	45 V	R _b	54	V_{ioad_back}	385 V

FREEDM Control Classification

Key features of the innovative FREEDM system:

- 1. Plug-and-play AC and DC Microgrid that integrate distributed renewable energy resources (DRER) and distributed energy storage devices (DESD).
- 2. Intelligent power management (IPM) through high bandwidth SST.
- 3. Intelligent fault management (IFM) with ultra-fast and intelligent FID.
- 4. Intelligent energy management (IEM) via coordinated optimization and dispatch of distributed resources. Slower communication can be used

Intelligent Power Management (IPM) Control of FREEDM System

Operation modes and transitions

IPM Challenge: operate each component/subsystem in a distributed fashion while maintaining system stability under all operation conditions

Autonomous and Distributed IPM Control Strategy

- Encompasses L1 to L3 level of control
 L1 (energy cell) devices have it own control
- L2 (SST) has its own control
- Require no communication
 - Benefit from the inherent control bandwidth of the underlining power electronics

Dual Droop Control Strategy for DC Microgrid

Dual droop control:

- First droop for SST: f-P droop (AC frequency to SST active power) and P-Vldc droop (active power to DC voltage) combine to form the first droop: f-Vldc (AC side frequency to DC side voltage); SST acts like a real transformer, only lets power flow through it.
- Second droop for DC microgrid:
 - DESD: Vldc-P droop; affording/absorbing power to/from SST according to the Vldc (upper level AC frequency f indeed);
 - > DRER: normally MPPT control; *Vldc-P* droop when *Vldc* is too high;
 - ➢ Load: shedding at low *Vldc* point;

DESD, DRER are the only energy sources in system; the working point is determined by loads and available sources.

Simulated FREEDM System

Component	Rated Power	Component	Rated Power
Substation SST	6000VA	Battery1, Battery3	600W
SST1	1200VA	Battery2, Battery4	400W
SST2	1000VA	Load1	120Ω
PV1, PV2	600W	Load2	240Ω

Simulation Case 1: Mode I to II

- 1.7 kW grid power is lost at 2.5s
- Battery automatically change from charging to discharging following the double droop strategy
- Battery power sharing automatically achieved
- Power balance is reached within 0.1s

Simulation Case 4: Mode II to I

 When MV grid recovers, dual droop re-balance the power flow . Battery in charging mode

Simulation Case 3: Mode II to III

- DC microgrid 1 battery and PV production stops
- Available power not capable to regulate medium voltage frequency. SST1 and SST2 disconnect from medium voltage feeder
- DC microgrid 2 is capable to keep DC microgrid 2 operation

Simulation Case 5: Mode III to I

- When MV grid recovers, SST reconnect to the MV feeder
- dual droop re-balance the power flow .
- DC microgrid 1 restarts, battery in charging mode
- DC microgrid 2 battery moves into charging mode

SST Winning Strategy for Smart Grid

Microsecond •Fault management •Current limiting •Disconnect/reconnect

•Power Management:

- 1. Control power factor/Var Injection
- 2. Change/Control customer voltage
- 3. Low voltage ride through
- 4. Eliminate customer side harmonics
- 5. Provide DC power/Forming DC Microgrid
- 6. Bidirectional Power flow control via Energy Cell aggregation
- 7. Supports advanced power managements and islanding modes
- •Energy Management •Monitor energy usage (AMI) •Can control/dispatch power via microgrids (Energy Cell) •Demand side management

Electric Market Reality & Transformation

Where is the customer: You?

USA Residential Customer: 128m Source: EIA \$114/Per Month/Per Customer ~15B/per month

Step 2: Towards Energy Internet

[1] Huang, A.Q.; Crow, M.L.; Heydt, G.T.; Zheng, J.P.; Dale, S.J.; , "The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet," *Proceedings of the IEEE*, vol.99, no.1, pp.133-148, Jan. 2011

[2] W. Su, and A.Q. Huang, "A Game Theoretic Framework for a Next-generation Retail Electricity Market with High Penetration of Distributed Residential Electricity Suppliers" *Applied Energy*, vol.119, pp.341-350, April 2014.

[3] W. Su, "The Role of Customers in the U.S. Electricity Market: Past, Present, and Future", The Electricity Journal, 2014. (invited)

The Third Industrial Revolution

"using Internet technology to transform the power grid of every continent into an **Energy Internet** that acts just like the Internet (when millions of buildings are generating a small amount of renewable energy locally, on-site, they can sell surplus green electricity back to the grid and share it with their continental neighbors); and"

THANK YOU