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Cyber-Enabled Smart Distribution

• Smart Grid 

– Automated Meter Reading (AMR)

– Demand Side Management

• Centralized Supervisory Control 

And Data Acquisition (SCADA)

• Electric Utility Control

• Smart Grid  Version 1 
Source, Monitor Mapboard Systems

Scalability, fault management, security and privacy



How much farther can we take 

this idea?



The FREEDM (Future Renewable Electric 
Energy Delivery and Management) Concept

• Distributed Grid 
Intelligence (DGI)

– People share 
energy 
resources

– Neighborhood 
or industrial 
level

– Where is the 
centralized 
controller?

– Peer-to-peer



DGI Architecture

•Local Computation 

on embedded 

computers

•Transport Protocol 

i.e. TCP/IP

•Device/Power 

Electronics 

Communication 

Protocol 

•System State 

Management

•Fault Interrupters

•Reconfigurable



Home Environment



• DGI/RSC Provides FREEDM’s 

Operating System Services
• Power/Energy Balance (Y1)
• Group Management (Y2)
• State Collection (Y3-4)
• Fault Detection & Invariants (Y5-6)
• Plug and Play (Y5,8)
• MQTT Integration with DGI (Y8)
• DGI Algorithms (Y5-Y10)

• Current status
• Integrated in HIL, Implemented in GEH
• Replaced Interfaces with 3

rd
party

• Real Time

• Limitations
• Limited Set of Secure Management Alg
• Lack of Center-Wide Invariants/Architecture
• Partial Integration with FID 8

Background/Motivation



Objective

• Secure Algorithms  & 
Invariants
• Develop Secure Power 

and  Energy 
Management

• Develop Secure 
Volt/VAR

• Develop Secure 
Attestation

• Invariants Crucial for 
Integration of DGI with 
SMC/Controls Thrust

• Integration of MQTT into 
DGI

• Integration of DGI into 
GEH

9

DGI/RSC

FAWG

LSSS/ 
HIL/ 
GEH

SMC



Technical Approach

• Develop distributed 
Volt/Var algorithm within 
DGI 

• Continue with Invariants for 
governing system 
dynamics implemented in 
HIL

• Continue to use Invariants 
as attestation algorithms 
for security

• Implement consensus-
based energy management 
with energy storage 
dispatch 

• Implement Federated 
Groups

• Implement MQTT 
integrated with DGI 10



Schedulable Entity

….Advanced Power Electronics….

The Solid State Transformer



Inside an IEM Node

• Solid State Transformer (SST)

– Power Electronics

– Schedulable Entity
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How to use it?



Distributed Power Balancing
• Correctness: Keep all nodes’ “balanced” in terms of 

Supply and Demand and minimize energy cost

• Pass messages negotiating load changes until the 

system has stabilized

• Global optimization decomposed into individual 

processes that cooperate to meet the global correctness.

XActual = XLoad − XDRER

System Load State

XActual < 0 Low (Supply)

XActual > Threshold High (Demand)

0<=XActual <=Threshold Normal
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PSTAR Commands:

Gateway Response:

Generator:

Generator 

Frequency:

“Peer-to-peer 
power 

migration –

balance the 
load



Switched System Dynamics



Lyapunov



Governing Voltage Invariant
• Measure voltage and power 

at every bus

• Compute “L” indicator and 

compare it to voltage

• Prevents voltage oscillations 

and collapse when 

embedded as a distributed 

invariant in load balancing.
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Without Invariant in 

DGI, 

Voltage Collapse

With Invariant,  DGI 

Stops Power Injection



Line Invariants
• Compare every  DGI 

migration with available 

transfer capacity (ATC) 

based line invariant value

• Prevents overloading when 

embedded as a distributed  

invariant in load balancing.
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Without Invariant in 

DGI, 

Voltage Collapse

With Invariant,  DGI 

Stops Power Migration
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Physical Attestation
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collect framework state

generate attestation framework

subset of DGI

select target and verifier DGI

verifiertarget

calculate physical invariants 

Conservation of Power:

Pgen + Pin – Pload – Pout ≤ ε 

Physical State: P, V, θ 

Pgen

Pin Pout

Pload

report if target is malicious 

attestation result 

A distributed security mechanism in the 

DGI that detects malicious peers using 

physical feedback

DGI
Node

Target
DGI

DGI
Node

Verifier
DGI

Physical State Message: P, V, θ 

Generator Load



PSCAD/DGI Results for Attestation

22

• Before Attestation
A DGI in the supply state 
increases its generation 
despite its malicious peer 
not doing a 
corresponding increase in 
load.

• After Attestation
The supply DGI performs 
attestation and undoes its 
generation increase when 
it observes no change in 
load from the malicious 
peer.



Federated Groups and Group Models

• Federated groups use a virtual 
device to transfer power between 
groups

– Affords hard real-time within a 
group and soft real-time across 
multiple groups

• Markov Model of Group 
Performance

– Big issue was making the DGI 
operation memoryless – this 
allows close calibration with 
the model.

• Adaptive Protocols

– ECN – notification of 
impending congestion, so 
reconfigure the groups to 
require less messaging

13
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MQTT ImplementationQTT
Integration into DGI
• Replace DGI’s PnP with MQTT 

(Message Queueing Telemetry 
Transport)

– Broker hosted in DGI

– Device attributes sent to DGI and 
made available to applications

– Standardize a device profile



1. Supply house advertises its excess generation

2. Demand house requests power from supplier

3. Supply house forms a migration contract

4. Supply house increases generation

5. Demand house increases load

Fake Supply Attack

fake migration
real migration

S D S DS D

S D

supplier

attacker

(no supply)

stolen power

demanddemand



Concurrent Fake Supply Attack
• House C launches a fake supply attack during a migration from A:

• During the attack, the low-level view of house B is:

• This view is consistent with either increaseA or increaseC!

Δphase

gen load gen load

C

gen load

A B

migrationA migrationC

migrationA migrationC Δphase



Physical Attestation
• A verifier checks if another cyber process is compromised using 

physical measurements.

• Similar to a remote attestation algorithm that uses the physical layer 
as a shared memory.

verifiertarget

peer

peer

attestation

algorithm

local physical measurements

target is honest

OR

target is dishonest



Conservation of Power

• Conservation of Power at b:

• Ib is an invariant that must be true for the physical system.

• If Ib is violated, then at least one house must be dishonest.

a b c

house a house b house c

Pab Pbc

PbPa Pc

Pin Pout



• The invariant is instantiated using measurements from each house:

Physical Measurements

a b c

house a house b house c

Pab Pbc

PbPa Pc

Pin Pout



Unique Violation Pattern

• It requires observations from 7-houses 
to find a unique violation pattern:

• It is not possible to produce a unique 
pattern with fewer observations.

• This set of observations can be used 
to detect when house 4 performs a 
fake supply attack



Detecting the Compromised Node
• Assume b is malicious and the other two houses are honest.

• A set of invariants are violated when b falsifies its values:

• The dishonest house is the midpoint of each violation set.

Ia Ib Ic

house a house b house c

Pab Pbc

PbPa Pc

Pin Pout



MSDND in Attestation



Fundamental Barriers and How 

Addressed

• Systems 
Integration

• Transition to 
Testbeds

33

Determine and 
Mitigate Interfering 
actions

Power Engineers 
coding their 
applications directly 
in DGI for 
LSSS/HIL/GEH



Associated Work within DGI 

• HIL Implementation (Steurer, Leonard)

• Additional NSF Grant from CPS Program (Kimball, McMillin, 
Chow) for Invariant Development

• NIST Funding (McMillin) to extend the FREEDM security 
concepts to the openFMB SGIP/CPS PWG and other 
infrastructures

• NSF SFS Program to train cybersecurity researchers for 
government service.

• Protection System Development and future integration with DGI 
(Karady)

34



Read more about it
• Tamal Paul, Jonathan W. Kimball, Maciej Zawodniok, Thomas P. Roth and Bruce McMillin, 

“Invariants as a Unified Knowledge Model for Cyber-Physical Systems,” IEEE Trans on Smart 
Grid, January, 2014

• Information Flow and Verification: R. Akella, H. Tang, and B. McMillin, “Analysis of information 
flow security in cyber-physical systems,” International Journal of Critical Infrastructure Protection, 
vol. 3-4, pp. 157–173, December 2010.

• T. Roth; B. McMillin, "Physical Attestation in the Smart Grid for Distributed State Verification," in 
IEEE Transactions on Dependable and Secure Computing , vol.PP, no.99, pp.1-1 (2016)
Gamage, Thoshitha, Roth, Thomas, McMillin, Bruce, and Crow, Mariesa, “Mitigating Event 
Confidentiality Violations in Smart Grids: An Information Flow Security-based Approach,” IEEE 
Transactions on Smart Grid, 2013

• G. Howser and B. McMillin, "A Modal Model of Stuxnet Attacks on Cyber-physical Systems: A 
Matter of Trust," Software Security and Reliability (SERE), 2014 Eighth International Conference 
on, San Francisco, CA, 2014, pp. 225-234.

• Marina Krotofil, Jason Larsen, and Dieter Gollmann. 2015. The Process Matters: Ensuring Data 
Veracity in Cyber-Physical Systems. In Proceedings of the 10th ACM Symposium on Information, 
Computer and Communications Security (ASIA CCS '15). ACM, New York, NY, USA, 133-144. 

• A funny podcast on the subject, 16360: The Cybersecurity Episode 
http://managefeed.djaghe.com/ (2016)

http://managefeed.djaghe.com/


Volt-Var Control (VVC) on FREEDM Systems

1

Mesut Baran

NC State University



Objectives of VVC

2

• Primary goal 

To maintain the voltages along the distribution feeder 
within an appropriate range under all operating 
conditions.

• Secondary goal

To reduce power loss and energy loss

DT



Distribution Feeder Topology

3

Substation

Three-Phase Main Feeder

Tapped Laterals

• No of service: 

600-1200  DT

• Total  load

4-6 MW  peak (12 kV)



Conventional VVC

Centralized SCADA based control

4

• VVC employs simple rules on conventional system
• VVC needs more complex algorithms when DER penetration is high 

Source: Bob Uliski



Impact of PV on Voltage
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 Substation

Switched

 Capacitor

Voltage

 Controlled

 Bus

 Primary 

Feeders

Alternate 

Backfeed 

Source

Recloser

Voltage

 Regulator

Tie 

Switch

MW-Scale PV close 

to substation

PV

PV PV

MW-Scale PV far 

from substation

PV

Many 2-3 kW 

Scale PV at 

Residential 

Load

Padmount 

Transformer

10 kW – 100 

kW Scale PV 

at 

Commercial 

Load

PV

Sunny Day Impact of Cloud Cover

Source: D. Lubkeman



Light Loading With PV

• Light Loading Condition

– Load: 2.8 MW

– PV: 6.7 MW 

• Simulation Results

6

Top of the Feeder -3.9 MW

High Customer Voltage 126.7 V

Low Customer Voltage 123.9 V

Losses 97 kW

PV is back feeding into the grid. 

A little bit increase in losses.

Overvoltage issues!

Source: D. Lubkeman



FREEDM System

• Feeder with high PV penetration

7

• SST Replaces DT

• SST VVC capabilities
- Regulate Secondary  V 
- reactive power comp, Qinj

SSTs can be used for VVC!

Qinj

V l

l



Decentralized VVC on FREEDM 

systems

• VVC goal: minimize power loss while keeping voltages within limits

8

VVC problem :  ��� �����(x)

s.t.

• power flow: � �,���� = 0

• volt limits:   ���� ≤ � ≤ ����
• Qsst limits: ������� ≤ ���� ≤ �������

• Decentralized Scheme

- Master – Slave scheme

- Gradient based method

Sub DGI 
Local DGI 

VVO Master
VVO Slaves

System 

Model Communication 

Interface

Communication 

Interface

Gradients & Step-sizeGradient Calculation

& Convergence Check

Distributed VVO 

Controller



Case Study

Test System
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Collaborative Distributed Control with 
Applications on Smart Micro-Grid 

Energy Management

Mo-Yuen Chow, Ph.D.

Advanced Diagnosis, Automation, and Control (ADAC) Laboratory

Department of Electrical and Computer Engineering

North Carolina State University

Raleigh, North Carolina

USA
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The Grid is Changing…

1

Passive Distribution 

System with Simple 

Structure

Active Distribution 

System with Complex 

Structure

In recent years the grid is changing….

Inter-connected controllable energy devices increase from thousands to millions



Solution 1: Centralized Approach

2

Power Line

Communication Link

Central Manager

 All units send their information regarding their demand, 
generation, preferences, and specifications to a central 
manager.

 The central manager uses the information to coordinate the 
resources and make optimal decisions about each unit.



Challenges of Centralized Approach

3

Power Line

Communication Link

Central Manager

 Not Scalable

 Vulnerability to central point of failure

 Vulnerability to communication link failures

 Global communication  requirement



Solution 2: Distributed Approach

 Each unit in the system exchanges information with its 

neighbors, makes local decisions, and iteratively updates its 

decisions.

 Advantages:

Scalable

Robust to central point of failure

Robust to communication failures

Requires only local communication capability

4
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Intermittence and Uncertainties

Energy Management Modules Energy Providers

 Distributed generation

 Renewable resources 
are geographically 
dispersed

 Weather/time dependent

 Steep ramp up/ramp 
down rate

 Intermittency

 Frequency regulation 
and load balancing

 …

 Customers

 Load profile

 Utility customer billing

 Reverse Power flow

 …
http://olivineinc.com/2013/03/21/caisocpuc-ltra-summit/

http://www.mauielectric.com/meco/Clean-Energy/Latest-Clean-Energy-News/Understanding-Renewable-Energy-and-Wind-Energy-Integration

http://olivineinc.com/2013/03/21/caisocpuc-ltra-summit/
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Cooperative Distributed Energy 
Management

Incremental Welfare Consensus (IWC) 

Algorithm for Distributed Demand Response and 

Generation Management

(2012-2014)

Cooperative Distributed Energy Scheduling 

(CoDES) for Storage Devices and Renewables

(2014 – present)

ADAC’s Distributed Technologies for Energy 

Management:

Incremental Cost Consensus (ICC) Algorithm for 

Distributed Economic Dispatch

(2009-2012)
G

G

G

G

G
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Why scheduling for storage devices is 
important ?

 Improves dispatchability of 

renewables: Store the renewable 

energy in time of production and use 

it in time of need.
Renewable Production

Time

k
W

Demand

k
W

Store Use

 Reduce power bill: Store energy when 

it is cheap and use it when it is 

expensive.

Energy Price

Time

c
e
n
ts

/k
W

h

Store Use

 Reduce the peak demand on the 

grid: store the energy during off-

peak hours and use it during on 

peak hours

Load on the grid

Time

k
W

Load on the grid

Time

k
W

Store Use

7



Cooperative Distributed Energy 
Scheduling Framework
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Data Collection 

and 

Management 

Module

Scheduling 

Module

Historical data

Weather forecast Market Information

Physical system data

Generation 

dispatch 

commands

Demand 

response 

commands

Storage device 

commands

System 

constraints 

System 

performance 

measures

Real-Time 

Operation 

Module

Real-time 

system status

Physical System

Real-time system 

operation 

measurement

Data Collection

Scheduling

Historical data

Weather forecast Market Information

Physical system data

Generation 

dispatch 

commands

Demand response 

commands

Storage device 

commands

System constraints 

(e.g. generation limits, 

charge/discharge rate limits, 

line capacities,etc)

System performance 

measures

(e.g. Cost, user 

satisfaction,etc)

Decision Making

Approaches:

• Conventional Dynamic 

Programming

• Gossip/Consensus based

• Model Predictive 

Control

• Approximate Dynamic 

Programming

• Evolutionary methods

• Hybrid approaches

• ….

Trade-offs:

• Computational 

complexity and 

quality of result 

• Available data and 

quality of result

• Forecasting horizon 

and quality of result

• Forecasting horizon 

and computational 

complexity

• ….

Import/Export 

Commands

Forecasting



Cooperative Distributed Energy Scheduling 
(CoDES) Algorithm

Objective: Schedule energy generation, and energy storage in a distributed way from now to
future to optimize the specified performance metrics.
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Constraints:

N. Rahbari-Asr, Y. Zhang and M. Y. Chow, "Consensus-based distributed scheduling for cooperative operation of distributed energy 

resources and storage devices in smart grids," in IET Generation, Transmission & Distribution, vol. 10, no. 5, pp. 1268-1277, 2016.
21



Communication Layer

CoDES v.s. Centralized approach
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Devices exchange 

local estimations

Augmented Lagrangian

Add KKT multipliers, 

constraints and penalty terms 

to the objective function

Primal-dual Decomposition

Parallel calculation, not fully 

distributed 

Consensus Algorithm

Each node coordinates with 

neighbors to estimate global 

information

N. Rahbari-Asr and M. Y. Chow, " Incremental Welfare Consensus Algorithm for Cooperative Distributed Generation/Demand 

Response in Smart Grid," in IEEE Transactions on Industrial Informatics, vol. 10, no. 3, pp. 1907-1916, Aug. 2014.



Cooperative Distributed Scheduling

• Distributed observer estimates the power mismatch for all the time steps,

• Dual estimator updates the estimate of the dual variables for the all time steps based on 

estimate of neighbors and estimated power mismatch:

• Decision maker updates decisions for all the time steps by moving them along the gradient 

of the Lagrangian :
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Distributed Energy Scheduling
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Results

Convergence of estimations (global variable estimations)

…
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As estimations converge, optimal decisions are made 

without a control center and without disclosing any device 

specific information

N. Rahbari-Asr, Y. Zhang and M. Y. Chow, "Cooperative distributed scheduling for storage devices in microgrids using dynamic KKT 

multipliers and consensus networks," 2015 IEEE Power and Energy Society General Meeting, July 26-30, 2015, Denver, CO, USA.
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