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Outline

« DGI System Overview — Dr. McMillin
« CoDES — Dr. Chow
 Volt-Var — Dr. Baran
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Cyber Enabled Smart Distribution

- Smart Grid % = Nmms{; mwu
— Automated Meter Reading (AMR) = “"m;;,: |
— Demand Side Management e e m: > °ﬂ“ﬂ""

« Centralized Supervisory Control _‘i'm s \@y ;
And Data Acquisition (SCADA) . AR =

 Electric Utility Control

B, fault management, security and privacy

« Smart Grid Version 1

Source, Monitor Mapboard Systems
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How much farther can we take
this idea?
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The FREEDM (Future Renewable Electric

Energy Delivery and Management) Concept

 Distributed Grid
Intelligence (DGI)

— People share
energy
resources

— Neighborhood
or industrial
level

— Where is the
centralized
controller?

— Peer-to-peer

FREEDM

Systems Center
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DGI Architecture

Local Computation
on embedded
computers
*Transport Protocol
i.e. TCP/IP
*Device/Power
Electronics
Camin Communication
Protocol
*System State
Management
Fault Interrupters
*Reconfigurable

Demand/Supply

Demand/Supply
Demand/Supply

POWER SYSTEM
ENVIRONMENT
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Home Environment
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FREEDM

Systems Center
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« DGI/RSC Provides FREEDM's

Operating System Services
« Power/Energy Balance (Y1)
« Group Management (Y2)
« State Collection (Y3-4)
» Fault Detection & Invariants (Y5-6)
« Plug and Play (Y5,8)
« MQTT Integration with DGl (Y8)
« DGl Algorithms (Y5-Y10)
« Current status
* Integrated in HIL, Implemented in GEH

« Replaced Interfaces with 3" party
 Real Time

 Limitations
« Limited Set of Secure Management Alg | i
« Lack of Center-Wide Invanants/Archltech N
« Partial Integration with FID N1

Tanspo

DGI *RICE'S
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Objective

« Secure Algorithms &
Invariants

Develop Secure Power
and Energy
Management

Develop Secure
Volt/VAR

Develop Secure
Attestation

Invariants Crucial for
Integration of DGI with
SMC/Controls Thrust

Integration of MQTT into
DGl

Integration of DGl into
GEH

COMPUTER SCIENCE



ST MissOURl UNIVERSITY OF SCIENCE AND TECHNOLOGY

—— e COVPUTER SCIENCE
Technical Approach

« Develop distributed
\[g%ll’ﬁ/Var algorithm within

« Continue with Invariants for
governing system
a;lllr_\amlcs iImplemented in

« (Continue to use Invariants
as attestation algorithms
for security

* Implement consensus-
based energy management
with energy storage
dispatch

« Implement Federated
Groups

* Implement MQTT
integrated with DGl 10
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Schedulable Entity

....Advanced Power Electronics....
The Solid State Transformer

FREEDM

Systems Center
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Inside an IEM Node

« Solid State Transformer (SST)
— Power Electronics
— Schedulable Entity

120V / 240V
72kV ~ ACDCRectfier DLDC Converter  _ DC/ACIwerter — AC
AC :IS” Su i ESHS St i r? lilnc isl : : | E | P 071]
L i ‘l : : ‘l ‘l : Tfangformz :‘l S-l : i ‘l _I %S _IK%S i LS CS
— vy ] Ean i — : ool | ! -|_
: :DC—— : : %l% ! rl(;(év—-: : J_ 1
PR b skl | : =
:4(% €3 R 4(?:5 :4(?: & | KF A 4(% L | Cs
! y | ) : | | | Port 2
" Highvoluge "~ HighVVoliage T Low Voltmge B ’
H-Bridge H-Bridge H-Bridge

Systems Center
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How to use it?
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Distributed Power Balancing

« Correctness: Keep all nodes’ “balanced” in terms of
Supply and Demand and minimize energy cost

« Pass messages negotiating load changes until the
system has stabilized

« Global optimization decomposed into individual
processes that cooperate to meet the global correctness.

XActua/ = XLoad - X DRER

Xaetya < 0 Low (Supply)
Xacta> Threshold High (Demand)
0<=X o1, <=Threshold Normal FREEDM

. Systems Center
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IEMO 20.551 L pca IEM O IEM O
eed
I[EM 1 H IEM 1 32.834 H IEM 1 H
LLesser
need
I[EM n H I[EM n

IEMn  30.721 H

| CAN SUPPLY v

-
|

Migrate 1 quantum of Power per successful request

After Load Balancing

IEMO  25.551 IEM 0 IEM 0 L
IEM 1 IEM1  27.834 IEM 1 H
IEM n H IEM n IEMn  30.721 H

Systems Center
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::L\_\—\_\ﬂ PSTAR Commands: -
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Switched System Dynamics

Vi)
Vi)

Figure: Asymptotic stability using multiple Lyapunov functions (V4 and V5). (a)
Two true Lyapunov functions. (b) One Lyapunov function (V,), one
Lyapunov-like function (V4).
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Lyapunov

@ V(x) is positive definite, that is, V(x) > 0 ¥x £ 0, V(0) = 0.
@ V(x) is radially unbounded.
o % < 0 along all trajectories (%f(x) < 0).
|f % is non-positive, the system is stable. |
system is asymptotically stable.

f av

7 Is strictly negative, the
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Governmg Voltage Invarlant

« Measure voltage and power L=
at every bus | s,
+ Compute “L” indicator and S =827
compare it to voltage Lo = Ma__ (L)
* Prevents voltage oscillations (1,1, <V il
and CO”apSe When . Without Invariant in With Invariant, DGI
embedded as a distributed DG, Stops Power Injection
ygltage Collapse £ s

invariant in load balancing.

| :
|
L g i, -
= ‘ L

19
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Line Invariants

Compare every DG
migration with available
transfer capacity (ATC)
based line invariant value
Prevents overloading when
embedded as a distributed
iInvariant in load balancing.

COMPUTER SCIENCE

pYer = pMer -0 __i PTDF, >0

P = P"™ = o0; PTDF, =0

ij,mn ij.mn
__ pMax _ p0
New __ pMax _ i j .
Pmn - [:]mn - PTDF ’PTDE]mn

ATC, = Min(P)“)Vij

ij.mn

<0

Without Invariant in
DGl,
Voltage Collapse

With Invariant, DGI
Stops Power Migration

i
i

20
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Physical Attestation

select target and verifier DGI

A distributed security mechanism in the tgt Vr
DGI that detects malicious peers using |
phyS|Ca| .I:eed baCk generate attestation framework

subset of DGI
J

l

collect framework state
Physical State: P, V, 8

1 o000
— T e

DGl Target DGl Verifier
Node DGl Node DGl

calculate physical invariants
Pgen Pload
l':’in Pout

/“—) /‘_) Conservation of Power:

Pgen + Pin — Pioag = Pout < €

Physical State Message: P, V, 6

A\ 4

@
©

v
report if target is malicious

attestation result
I 1

@Generator i Load @

21
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PSCAD/DGI Results for Attestation

- Before Attestation * After Attestation
A DGl in the supply state The supply DGI performs
Increases Its generation attestation and undoes its
despite its malicious peer generation increase when

notdoinga | it observes no change in
corresponding increase in load from the malicious
load. peer.

SS5T Real Power with Malicious Peers S8T Real Power using Physical Attestation

real power (kK\)
— —_ [ %) [
o [ o [iz]
real power (k)
5 wm B n°
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Federated Groups and Group Models

« Federated groups use a virtual
device to transfer power between

groups

— Affords hard real-time within a
group and soft real-time across

multiple groups
« Markov Model of Group
Performance

— Big issue was making the DGl
operation memoryless — this
allows close calibration with

the model.
« Adaptive Protocols
— ECN — notification of

impending congestion, so
reconfigure the groups to

require less messaging

Devices Devices @ Devices

DGl
(Leader)

#

DGl
(Leader)

EEEEEEEEEEEEEEEEEE

What is the pt malway to manage
0 p ower f th ent cyber network
* ‘ Optimal Algorithm

‘ Behavior
,M\c

eeeeee 13
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Replace DGI’s PnP with MQTT
(Message Queueing Telemetry
Transport)

— Broker hosted in DGI

— Device attributes sent to DGI and
made available to applications

— Standardize a device profile

20
o‘=°ﬁ
e
CLENTB | »°
‘l Cooling
System

MQTT
@
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MQTT Implementation

Application Application

Device |
Manager

MaTT

MaTT
Broker
(Mosquitto)

MODBUS MODBUS

ISON \ﬂf

Device 1

JSON
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Fake Supply Attack

1. Supply house advertises its excess generation
2. Demand house requests power from supplier

3. Supply house forms a migration contract attacker
A___g_g__,_g_s-___1__5-__1.4__1__5-1.5-;._“_-2-: (no SUppIY)

5. Demand house increases load W

—
fake migration

o|]]1]
o[/

— — —-real migration----- .

aN AN

)

c c ) = (G o
—@Dﬁ
) .

S D

stolen power

o]
o [0

o|J]1]
o B[]

demand supplier demand
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Concurrent Fake Supply Attack

« House C launches a fake supply attack durina a migration from A:

migrationa migrationg
A W y
| = ) [ -
() I (- ) | -
(| I (e ) | — =
(o) I (= ) | O =
gen load gen load gen load
Aphase

« During the attack, the low-level view of house B is:
migration, —> migrationg %[ Aphase ]

« This view is consistent with either increase, or increase!
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Physical Attestation

« A verifier checks if another cyber process is compromised using
physical measurements.

local physical measurements
% |
I

— peer I

% | attestation target is honest
— target —» OR

algorithm target is dishonest

PN

— peer

« Similar to a remote attestation algorithm that uses the physical layer
as a shared memory.
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Conservation of Power

« Conservation of Power at b:

{Ib:Pab+Pb_Pbc:0}

house a house b house ¢

Pa I:)b I:)c

Pin Y Pab > Y PbC > Y Pout s

« [ is aninvariant that must be true for the physical system.

« If I, is violated, then at least one house must be dishonest.
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Physical Measurements

The invariant is instantiated using measurements from each house:

house a house b house ¢
Pa Py P.
L Y Pab > Y PbC > Y POU'[
YY) - Y Y Y
a b C
(I : Pyy+ P, — Py, =0} House | Measurements
A V.0,

P., = %sin(@b —0,)

B PpVip0y
Pye = %2=sin(0c — 0p) C V0.
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Uniqhe Violation Pattern

It requires observations from 7-houses

to find a unique violation pattern:

It is not possible to produce a unique
pattern with fewer observations.

This set of observations can be used
to detect when house 4 performs a
fake supply attack

N | Falsified | Violations
1 V161 | 1,
P> | 1,
2 Voo | Ll
P Vo6s |
Pz | I
3 V305 | L1pl.
P3 V505 | 1Ll
Py | |-
4 Vabs | Iplcly
PaVals | Iply
Ps | 1y
5 Vs | 141,
PsVsbs | 11,
Pe | .
6 Viebs | 141s
PeVete | 14
7 V767 | 1.
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Detecting the Compromised Node

« Assume bis maliciols and the other two houses are honest.

house a house b house ¢

Pa Pb Pc

Pin Pab Pbc 3 Pout 3

A set of invariants are violated when b falsifies.its values:

Falsified Values | Violated Invariants
Pp I

Vitp lalplc

Py V0 l5lc

« The dishonest house is the midpoint of each violation set.
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MSDND in Attestation

Falsified Violated

_ : : : | _ _ Pattern Node Values Invariants
N1 N2 N3 N4 N5 N6 N7 R R ?
l | | l | | | U j V};Qf [,J};[k
. . W3 ] P;V,0; Ix
I J k I f L p K1 k P,r.; Ik
K2 k ngk I}'Iklf
Node k is malicious. K3 k P Vi lile

If node k reports false values for Py, the invariant I, will be
violated which corresponds to r1 = trie. However, the same
pattern of violations occurs when node j lies about the values
P;V;0; which is 13 = frue. Thus, we can show MSDND(ES) as

follows:

1. 13 xor K1 there is only one malicious node

2. AVp no one but k can read Py

3. AV, (w) privacy

4. .2V, (w) similar reasoning.
Therefore, an intelligent node j can launch at least one attack
that is MSDND(ES):

w k- [(k1 xor Y3)] Aw E [(Pikx, (w)) A (Pig, (w))]-
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Fundamental Barriers and How

Addressed
« Systems Determine and
Integration Mitigate Interfering
actions

Power Engineers

» Transition to coding their
Testbeds applications directly

in DG for
LSSS/HIL/GEH

33
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Associated Work within DGI

HIL Implementation (Steurer, Leonard)

Additional NSF Grant from CPS Program (Kimball, McMillin,
Chow) for Invariant Development

NIST Funding (McMillin) to extend the FREEDM security
concepts to the openFMB SGIP/CPS PWG and other
infrastructures

NSF SFS Program to train cybersecurity researchers for
government service.

Protection System Development and future integration with DG

(Karady)
Cannot Enéam: rve

Sees All

ot ObsefvéD{A}

SD[B}. ) SD(Pipe)

sd{cj -3

distribution line 34
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Read more about it

Tamal Paul, Jonathan W. Kimball, Maciej Zawodniok, Thomas P. Roth and Bruce McMillin,
“Invariants as a Unified Knowledge Model for Cyber-Physical Systems,” IEEE Trans on Smart
Grid, January, 2014

Information Flow and Verification: R. Akella, H. Tang, and B. McMillin, “Analysis of information
flow security in cyber-physical systems,” International Journal of Critical Infrastructure Protection,
vol. 3-4, pp. 157—173, December 2010.

T. Roth; B. McMillin, "Physical Attestation in the Smart Grid for Distributed State Verification," in
IEEE Transactions on Dependable and Secure Computing , vol.PP, n0.99, pp.1-1 (2016)
Gamage, Thoshitha, Roth, Thomas, McMillin, Bruce, and Crow, Mariesa, “Mitigating Event
Confidentiality Violations in Smart Grids: An Information Flow Security-based Approach,” IEEE
Transactions on Smart Grid, 2013

G. Howser and B. McMillin, "A Modal Model of Stuxnet Attacks on Cyber-physical Systems: A
Matter of Trust," Software Security and Reliability (SERE), 2014 Eighth International Conference
on, San Francisco, CA, 2014, pp. 225-234.

Marina Krotofil, Jason Larsen, and Dieter Gollmann. 2015. The Process Matters: Ensuring Data
Veracity in Cyber-Physical Systems. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security (ASIA CCS '15). ACM, New York, NY, USA, 133-144.

A funny podcast on the subject, 16360: The Cybersecurity Episode
http://managefeed.djaghe.com/ (2016)
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Volt-Var Control (VVC) on FREEDM Systems

Mesut Baran
NC State University




FREEZW:  oObjectives of VVC

SYSTEMS CENTER

* Primary goal

To maintain the voltages along the distribution feeder
within an appropriate range under all operating

conditions.
ﬁ_@, Primary feeder N Rural primary N
8888 *e {
tt \ i
. R il Last rural
First customer Last customer customer

Low Voltage

Substation End of
Feeder
First Last

Customer Customer

Distance from
—

Substation

e Secondary goal
To reduce power loss and energy loss



FREE= Distribution Feeder Topology

SYSTEMS CENTER

* No of service:
N Tapped Laterals 600-1200 DT
] « Total load
4-6 MW peak (12 kV)

Three-Phase Main Feeder

Substation



FREE=: Conventional VVC

SYSTEMS CENTER

Centralized SCADA based control

SCADA _%,,ﬁr

Processor Interface |
SCADA Comm
Circuits
omm
LTC . Interf
Controller Substation Volt Meter
LTC RTU ? or AMR
H Radi
\.lJ Current 0 Voltage \_l_;
Transformer Transformerm
Capacitor End of Feeder
Bank
Bus Voltage Controller

Transformer

Capacitor
Bank Source: Bob Uliski

« VVC employs simple rules on conventional system
« VVC needs more complex algorithms when DER penetration is high



FREEE:  Impact of PV on Voltage

SYSTEMS CENTER

MW-Scale PV close MW-Scale PV far
to substation from substation

Substation Primary
Feeders

/@ Tie
_3 & Voltage Recloser Switch
Controlled —. ‘ 40_
Bus | Voltage
Regu|ator Alternate
Backfeed
Switched Source
CapacitorI
S
4_
A
10 kW —100 Padmount
kW Scale PV Transformer g
at Many 2-3 kW
Commercial Scale PV at ﬂ Source: D. Lubkeman
Load Residential
Load
/"h'v"‘ﬁﬁ 7y 1 150%
e v [‘f\.m J
'
P W ‘ 100% e — —1
| 50% —H— |
] 0%
p \ 1 12:00 12:20 12:40 13:00 13:20 13:40 14:00

Sunny Day Impact of Cloud Cover 5
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* Light Loading Condition

— Load: 2.8 MW
— PV: 6.7 MW

Simulation Results

Top of the Feeder -3.9 MW
High Customer Voltage |126.7V
Low Customer Voltage |123.9V
Losses 97 kW

1.3018

1.3017 |

1.3016 |

1.3015

1.3014 |

1.3013 |

1.3012 |

13011 -

1.301 ¢

1.3009

1.3008

Light Loading With PV

x10 Voltage (120 V Base)
g Substation
Switching Capacitor | |
e
N A
A
A

2337 2338 2339 234 2341 2342 2343

x10°

PV is back feeding into the grid.

A little bit increase in losses.

Overvoltage issues!

127

126

1125

<124

o 123

122

121

Source: D. Lubkeman
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 Feeder with high PV penetration

« SST Replaces DT

Vl —  Load

—  SST
e

Qinj | i

« SST VVC capabilities
- Regulate Secondary V,
1 - reactive power comp, Qin;

SSTs can be used for VVC! i




FREER™ Decentralized VVC on FREEDM

SYSTEMS CENTER SyStems

« VVC goal: minimize power loss while keeping voltages within limits

VVC problem : min Pj,4(X)
s.t.
- power flow: g(x,Qgsr) =0
« volt limits: V™" <y < ymax
+  Qsst limits: QI < Qgep < QMYX

Sub DGI Local DGl
u
« Decentralized Scheme Ev— VYO Staves
Gradient Calculation Gradients & Step-size Distributed VVO
Controller
- Master — Slave scheme & Comvergence Check | |
- Gradient based method Model || Communicaion Fhetce




FREEZ W, Case Study
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Test System Load and PV profiles

Normalized PV and Load Profile

Load

PV
08 | 4

thd S | «,\“’ i

02 |

— o —

1
!

-~ >
~88 _830 @4 B%= 7

00:00 04:00 08:00 12:00 16:00 20:00 00:00
Loss Reduction Node Voltage on Primary Feeder max(Q n
14 T T 5 ‘\\ T T T T T T T T T T T T T T T T T T T T T T T T T T 1
before VWO
o | \ |
124 \ after proposed VO
10 | after LP VO ] 0
s
102 |
A
o8l -
3o
s
< = 2
Z o6} s T g
H
]
£ 0w |-
o4l . $ 3
g
< om [ — \
nat | 2 § §
0sr | 4
0 PN, A E e L ]
5 . . . . .
0z T O Y T Y T T Y M N B S 00:00 04:00 08:00 1200 16:00 2000 0000
00:00 04:00 08:00 12:00 16:00 20:00 o0:00 900 802 806 805 12 814 550 B1s 824 625 B30 854 G52 632 856 G4 60 835 G62 815 820 622 883 890 G4 842 844 B4 845 840 : : i : - : -

Node #

power loss reduction voltage profile Qinj from SSTs
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Collaborative Distributed Control with
Applications on Smart Micro-Grid
Energy Management

Mo-Yuen Chow, Ph.D.

Advanced Diagnosis, Automation, and Control (ADAC) Laboratory
Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, North Carolina
USA




The Grid is Changing...

In recent years the grid is changing....

Gr

Today's Electricity

Passive Distribution
System with Simple
Structure

Inter-connected controllable energy devices increase from thousands to millions




NC STATE UNIVERSITY Solution 1: Centralized Approach

> All units send their information regarding their demand,
generation, preferences, and specifications to a central
manager.

> The central manager uses the information to coordinate the
resources and make optimal decisions about each unit.

Central Manager

Power Line

<¢— — p Communication Link




Challenges of Centralized Approach

> Not Scalable
> Vulnerability to central point of failure
> Vulnerability to communication link failures

> Global communication requirement

Power Line

<— — p» Communication Link




Solution 2: Distributed Approach

> Each unit in the system exchanges information with its
neighbors, makes local decisions, and iteratively updates its

decisions. Convergence rate vs. number of no@]es
> Advantages: s | | fi
» Scalable QQ@ @ QHEBQ@DH ﬁ
» Robust to central point of failure ZSZ H |
» Robust to communication failures

» Requires only local communication capability

Y
Y

8/

TR
2y S\

?z::::::mm::;w
=T o

l)ﬂﬂdd&;dﬂu‘ddda’u’ﬂdﬂ'[.‘ﬁ
,FRSRERIMIRIT
ZANMIITIT

y

é?

U

lﬁ%.‘ - - -~ /

<— — p Communication Link & @ = Q= ,,,/""'/.

— — A

Power Line

/ / ¢
| €
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Intermittence and Uncertainties

> Energy Providers

> Distributed generation

> Renewable resources
are geographically
dispersed

> Weather/time dependent

> Steep ramp up/ramp
down rate

> Intermittency

> Frequency regulation
and load balancing

> ...

» Customers
> Load profile
> Utility customer billing
> Reverse Power flow
> ...

Eneregv Management Modules

Load, Wind & Solar Profiles — High Load Case
January 2020
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Cooperative Distributed Energy
Management

ADAC’s Distributed Technologies for Energy
Management:

[Incremental Cost Consensus (ICC) Algorithm for
Distributed Economic Dispatch
(2009-2012)

\ %
é Incremental Welfare Consensus (IWC) \rwver
Algorithm for Distributed Demand Responseand | __ 4 @ @~ |

I'y [ A

Generation Management i
> (2012-2014) -

trol Layer

Cooperative Distributed Energy Scheduling v n u
(CoDES) for Storage Devices and Renewables Ex;d F;b;,eﬂ &;:;};:
(2014 — present) 3 e

v i Ph:sicat Layer Y '

Power Line : Ej
] : Micro Wind Solar Distributed Load
Communication Link Turbines Turbine Panel Energy Storage
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Why schedul.lng for storage devices is
important ?

Demand

> Improves dispatchability of - e
renewables: Store the renewable jlllllllIL
energy in time of production and use
it in time of need. I

kW

Renewable Production

< |_!D > < I:
2 Store Use
. ]
> Reduce power bill: Store energy when Time
o, . . o, . Energy Price
it is cheap and use it when it is ————————
expensive. P _ X
g ’, Store Use
[T [ 1]
> Reduce the peak demand on the Load on the grid T™e Load on the grid

grid: store the energy during off-
peak hours and use it during on =

peak hours

Store | Use Time




CooperativeoDistributed Energy
Scheduling Framework
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COoperative(gf)slt)rﬁijgl)lt:]igﬁﬁ‘:llﬁf Scheduling

Objective: Schedule energy generation, and energy storage in a distributed way from now to

future to optimize the specified performance metrics.

T
1 _ k-1
{Pt(k):kzl,l.’?%geGd uD ) J = ;7/ C(k)

T : Horizon of scheduling

C(k) : Cost at time step k (Generation Cost,
Power Loss, etc.)

0 <y < 1: Discount factor for future performance

Constraints:
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1) Power Balance Constraint Rooftop Roofp  wrtuted other
_____ Communication Link Solar Panel Wind Turbine Energy Storage ppliances Loads
() Communication Node
Vk=1,..T: ¥ Pki= 3 PRk +P, | | | | |
ieG, UG, ieD;UD,,
2) Power Rating Constraint
D, Set of indices of dispatchable demand units
Vk = 1’ e T’ Vie Gd D d - D,, Set of indices of non-dispatchable demand units
Pi min < B (k ) < Pl max G, Set of indices of dispatchable generation units
. p . G, Set of indices of non-dispatchable generation units
3) Energy Constraint ( or Storage Dev1ces) B Set of indices of storage devices (B € Gg4)
VieB 1€ {1’ e T} : SoC; (k) State of charge of the storage device with index i at time step k
t . . . . .
Cap; Capacity of the storage device with index i (kWh)
Cap, (I—SOCZ.O) < ZPl.(k)At < Cap,SoC,, —
| At Length of scheduling time step

N. Rahbari-Asr, Y. Zhang and M. Y. Chow, "Consensus-based distributed scheduling for cooperative operation of distributed energy
resources and storage devices in smart grids," in IET Generation, Transmission & Distribution, vol. 10, no. 5, pp. 1268-1277, 2016.
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CoDES v.s. Centralized approach

Augmented Lagrangian Primal-dual Decomposition Consensus A]gorithm
Add KKT éﬂUltlp lhers’ Parallel CﬂlCUlation, not fully Each node coordinates with
constraints and pena vy .terms distributed neighbors to estimate global
to the objective function o i
information
—_— — >

Communication Layer

O e ) M S

AR AP AP AP AP
i 7 j " F

i i 1 i} i

O 2N O

Energy Wind
Storage Load Turbine

o
>
o
>
o
>
o

Devices exchange
local estimations

\
gy
Electrical

Vehicle

Physical Layer

N. Rahbari-Asr and M. Y. Chow, " Incremental Welfare Consensus Algorithm for Cooperative Distributed Generation/Demand
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Cooperative Distributed Scheduling

Lagrangian of the problem
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Distributed Energy Scheduling

Price (cents/kWh)

Local Profiles

20

F

TFWFTFT—][][][]{]g

Local Profiles

30

15 30 45 60 75 90 105120135150

Time (min)
Grid (kW)

20

15 30 45 60 75 90 105120135150

Time (min)
Wind Generation (kW)

n

Il

T

15 30 45 60 75 90 105120135150

Time (min)

Wind Turbine

<EIID}"'\\ﬁ,.'
fol |

DESD3(kW)

DESD 3

15 30 45 60 75 90 105120135150 1Q

Time (min)

Local Profiles

——
Estimation X
‘ f Busl
Decision _______________
—_
N
Grid ~
N
N

Estimation

31

Decision

SST3

l Load

Load3 (kW)

Prediction of global variables
(e.g. Power mismatch)

Decision variables
( Charge/Discharge rate)

F;

Estimation

31

Decision

Local Profiles

Communication Node
Communication Link

40 20 AL _OoN 70 0N 400490420400

TIii

Load1 (kW)

15 30 45 60 75 90 105120135150
Time (min)

DESD1(kW)

Estimation

31

Decision

SST2

15 30 45 60 75 90 105120135150
Time (min)

Solar Generation (kW)

RIS

15 30 45 60 75 90 105120135150
Time (min)

l Load

DESD2(kW)

Load2 (kW

)

15 30 45 60 75 90 105120135150
Time (min)

15 30 45 60 75 90 105120135150

Time (min)

Time (min)

12



Results

Convergence of estimations (global variable estimations)
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N. Rahbari-Asr, Y. Zhang and M. Y. Chow, "Cooperative distributed scheduling for storage devices in microgrids using dynamic KKT
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