

Ultra Fast, High Efficiency DC Circuit Protection for Renewable Energy Distribution Systems L. Mackey, M. R. K. Rachi, C. Peng, I. Husain

Motivation

Modernization of electric equipment, distributed renewable energy resources (DRER) and the computer revolution have resulted in DC system proliferation as shown in Fig. 1.

• DC circuit protection is a key system need

Figure 1 – The Proliferation of DC Systems is Growing Every Day in Modern Life

Background

• Natural AC zero-crossings quench arc during current interruption as shown in Fig. 2.

- DC constant bias requires forced current zero
- DC faults are often more severe than AC due to low impedance of DC networks and DRERs requiring ultra-fast isolation
- Solid state switches provide fast isolation but consume real power.
- Hybrid or resonant DC protection systems with minimal on-state power consumption are researched and developed by FREEDM Systems Center.

Active Damping of UFMS

- Thomson Coil Actuation (TCA) is used to developed a medium voltage fast mechanical switch as exhibited in Fig 3.
- Active damping of switch is implemented to improve performance and isolation time.

- Ultra-fast mechanical switch (UFMS) with active damping achieved:
 - 4.5mm vacuum gap within 2ms
 - Equivalent 60kV voltage withstand in a 15kV switch without rebound, 400% V_{Rated}.
- Dynamic testing shown in Fig. 4.
- Prototype UFMS and hybrid DCCB in Fig. 5.

• DC circuit protection is predicated on isolation time of the switching devices.

Figure 5 – Ultra-Fast Mechanical Switch (Left), Hybrid DC Circuit Breaker Test Bench (Right)

Z-Source Circuit Breaker

- Prior art Z-source DCCBs use thyristors for isolation with large annual kWh losses.
- Proposed design of Fig. 6 replace the thyristor with an UFMS, minimizing loss.
- Proposed for low voltage DC application.
- Forced zero crossing and metal-oxide varistor utilized ensure switch safety.

Figure 6 – Z-source breaker without source inductor (left) and with source inductor (rig

Supplemental source inductance provides the necessary time window for fault detection and isolation in Fig. 7.

			UFMS		
0.30 - IBRK	VBRK		0.15 - IBRK	VBRK	
0.20			0.13		
0.10			0.10		
0.00			0.08		
0.00	PSCAD		0.05	PSCAD	
-0.10 -	Ŧ		0.03	1	
-0.20			-0.03		
-0.30 -			-0.05		
-0.40			-0.08		
× 0.194 0.196 0.	198 0.200 0.202 0.204	0.206 0.208 0.210	× 0.1995 0.2000 0	.2005 0.2010 0.2015	

Figure 7 – Mechanical Switch Current without (left) and with (right) Source Inductance Added

Analytical model: Source Current: $I_L(t) = \frac{V_S \sqrt{C}}{\sqrt{2 \cdot L}} \cdot \sin\left(\sqrt{\frac{2}{L \cdot C}} \cdot t\right)$ Peak Current: $I_{Peak} = I_0 + \frac{V_S \sqrt{C}}{\sqrt{2!L}}$

Current Derivative: $I'_L(t) = \frac{V_S}{L} \cdot \cos\left(\sqrt{\frac{2}{LC}} \cdot t\right)$

Figure 8 – Z-Source Breaker Test bench (Sensors and Safety Shields removed for Clarity)

Mechanical switch interrupting 8A in 0.5 milliseconds and forced zero crossing of Z-Source Network at Fault shown in Fig. 9.

NC STATE UNIVERSITY

Potential Impacts

- DC Systems can be protected in 1-2 milliseconds both at medium and low voltage, this technology can be extended to other types of mechanical switches.
- Minimized on-state power consumption.
- Reduction of voltage stress on protection device by fast fault clearing.
- Eliminate oversize component requirement.
- Open doorways to future advanced DC distribution in Ships, Cities, data centers, etc.

Conclusions and Next Steps

- Active Damping of UFMS significantly improves operation time and performance
 - Electrical team will research development of Generation 2 UFMS with Active Damping optimized mechanical design
- UFMSs are viable improvements to a variety of DCCBs including Z-Source and Hybrid designs to minimize on state power loss
 - Develop current sensing and timing controls for Z-Source DCCB which can be extended to other UFMS based DCCBs
- Advanced control can be integrated into distributed grid intelligence and coordination
 - Next steps include analysis of protection coordination both upstream and downstream of Z-Source Circuit Breaker
- In coming months, the OCAES Electrical team will compare potential solid state switch and driver technologies to implement 100 kV voltage withstand capability within MVDC Circuit Breaker Applications.

Partners

Figure 3 – FEA Model of Thomson Coil Actuator (Left) and Damping Magnetic Flux (Right)