Y9.ET1.3 Reputation-based Distributed Resilient Cooperative Distributed Energy Scheduling Algorithm

Overview

Background

- > A paradigm shift from centralized to distributed control in power system
- Distributed energy management algorithms to determine the optimal operational point for microgrids
- \succ Vulnerable to malicious cyber attacks, which might lead to economic losses or even system breakdowns.

Fig.1 Malicious attacks on distributed control framework

Problem statement

- Design a resilient distributed control strategy to secure the distributed energy management algorithm:
 - Detect and respond to potential cyber attacks
 - Maintain the optimal operational point in the adversary environment
- Implement the resilient control strategy in DGI 2.0

Technical Approach FREEDM system Low price $t = T_1$ watch algorithm information

Jie Duan, Mo-Yuen Chow

Benefit (cents)	Total Bill	DESD 3	DESD 1	DESD 2
Normal	187.02	26.08	38.56	22.35
Attacked	208.55	34.06	35.98	17.03
Difference	21.53	7.98	-2.58	-5.32
Impact (%)	+11%	+30%	-6%	-23.6%
On the	Horizon			
On the Impl resili in De	Horizon ement the ient distril GI 2.0	e Reputa [.] buted cor	tion-base htrol algo	ed rithm
On the ≻ Impl resili in D	Horizon ement the ient distril GI 2.0 Ref	e Reputa buted cor	tion-base htrol algo	ed rithm

- uaii, vv. Zeiiy, ivi. I. Uliuw, "Resilient Cooperative Distributed Energy Scheduling against Data Integrity Attacks," in 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 2016.
- 2. J. Duan; M. -Y. Chow, "Data Integrity Attacks on Consensus-based Energy Scheduling Algorithm," in IEEE Power & Energy Society General Meeting, Chicago, MI, 2017. (Submitted)

Partners

