

Y9.GEH1.3 Development of SiC Low Voltage SST for GEH Testbed Dr. Radha Sree Krishna Moorthy, Siyuan Chen, M. A. Awal, Dr. Wensong Yu, Dr. Iqbal Husain

Objectives

Single SST Operation

- Maintain all residential loads as long as any energy source is present, i.e. grid or DESD or DRER & isolate loads from disturbance on grid side
- Ensure smooth transition between gridtied and islanded modes of operation
- Enable real and reactive power dispatch capability on demand from DGI

Multi-SST Operation

Facilitate sharing capability power different SSTs at between off-grid condition & smooth islanding and grid connecting capability

- external faults
- SST during power up
- & inductors
- Water proof enclosure

Control Hierarchy

Easily scalable and modular configuration with bidirectional power flow capability

Each port is designed with protection circuitry for protection against internal and

> Includes soft start circuit to protect the

Customized forced air cooling for modules

Grid connecting/islanding switch

Hardware Prototype

Gate driving circuit and the interfacing board

Power stage with protection circuits

Customized inductor mounting with wind channel for forced air cooling

Integrated LVSST in an enclosure

Impacts

- Address the challenges and issues with the operation and control of multiport converters with bidirectional power flow capability at all ports
- Establishes a fully functional microgrid testbed for demonstrating grid connected and islanded modes of operation and intelligent power and energy management algorithms
- > Provides a platform for testing the resilience and robustness of various control algorithms like passivity based control.

Partners

