

Background

- Net-metered PV residences could save 5% of their total electricity load for houses switching to a DC distribution system in their houses¹.
- DC-internal technology residential appliances are more energy efficient compared to standard technology¹.

Load Type	Energy Saving
Cooling load	36.5%
Non-cooling load	32.8%

> FREEDM can provide DC service. This benefit has not been evaluated and could potentially form the most cost effective FREEDM application

> How will FREEDM houses compare to Non-FREEDM houses?

Approach

. Model different residential houses Location: NC-Wilmington Electric heating and cooling Three-tier efficiency for converters

- 2. Size the PV system so the AC house is net zero energy house
- 3. Calculate the losses for a year
- Perform cost benefit analysis for 4. each type comparing to AC house

Y9.GEH2.3 FREEDM DC House

Lisha Sun, Dr. David Lubkeman, Dr. Mesut Baran

Results

- House Parameters
 - ✓ Location: Wilmington, NC
 - Total load for a year: 15 MWh
 - ✓ Switch to DC internal load: 10
 - ✓ PV system: 8 kW
 - Solar energy generated: 12 MWh-yr.
 - Electricity price: 10 cents/kWh
 - ✓ Asset life: 25 years

Note: The analysis exclude the appliance efficiency savings.

Cost Table

Devices	Size	AC House		Conv. DC		FREEDM Hybrid		FREEDM DC	
Inverter	8 kVA	\$	3,025	\$	-	\$	-	\$	-
DC/DC MPPT	8 kVA	\$	-	\$	1,210	\$	1,210	\$	1,210
DC/DC 380-24V	1.5 kVA	\$	-	\$	214	\$	-	\$	214
Biderctional Rectifier	5 kVA	\$	-	\$	620	\$	-	\$	-
Total Cost	Above	\$	3,025	\$	2,044	\$	1,210	\$	1,424
SST Cost	\$/year	\$	-	\$	-	\$	82.0	\$	54.6
	or \$/month	\$	-	\$	-	\$	6.8	\$	4.6
Total Energy losses (MWh/yr.)			2.24	2.09		1.62		0.75	

Comparative Analysis

Comparing	to AC House	Сс	onv. DC	F	REEDM Hybrid	FR
Device Saving (Year 0)		\$	981	\$	1,815	\$
SST Cost per Year (\$)		\$	-	\$	82	\$
Eporav	MWh/yr.	0.1	5 MWh	0.	61 MWh	1.4
Saving per Year	%	1.3%			13	
	\$/yr	\$	14.7	\$	61.4	\$
Saving pe	er Year (\$)	\$	14.73	\$	(20.60)	\$
Savin	g NPV	\$	1,115	\$	1,628	\$

)	MWh

Conclusion and Next Steps

- Conclusions \succ
 - ✓ DC House is more energy efficient than AC House.
 - ✓ FREEDM House is more efficient than non-FREEDM house.
- Next Steps
 - Combine the appliance efficiency savings into the study.
 - ✓ Perform a comprehensive cost benefit study for customers.
 - ✓ Include the impacts of new technologies like energy storage and electric vehicles.
 - \checkmark Research new tariff policy like a FREEDM DC service package which may lead to win-win for both the utility and customers.

References

- 1. K. Garbesi et al., "Optimizing energy savings from direct-DC in U.S. residential buildings" LBNL, 07/2012
- 2. L. Sun, J. Thomas, S. Singh, D. Li, M. Baran, D. Lubkeman, J. DeCarolis, A. Queiroz, L. White, S. Watts, "Costbenefit assessment challenges for a smart distribution system: a case study" 2017 IEEE PESGM (Accepted)

