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Abstract—Permanent Magnet Synchronous Machine (PMSM)
torque control over a wide speed range is essentially an op-
timization problem that treats torque error minimization as
the objective function with inverter voltage and current as
constraints. It is usually time consuming and difficult to solve
such optimization problem for closed-form solutions since torque,
voltage and current equations are all non-linear in the problem.
In this paper, a model linearization based approach is proposed
to manage the calculation complexity for such non-linear opti-
mization. By dividing the problem into two sub-optimizations
and solving them sequentially, the calculation is simplified.
By identifying different operating regions of the PMSM, the
closed-form solutions can be obtained geometrically with model
linearization, which further simplifies the optimization process.
The proposed algorithm is implemented for PMSM current loop
controller design; simulation results show a good performance
of the controller.

Index Terms—optimization control, Permanent Magnet Syn-
chronous Machine(PMSM), Maximum Torque per Amp(MTPA),
Maximum Torque per Volt(MTPV).

I. INTRODUCTION

Permanent Magnet Synchronous Machine (PMSM) torque

control over the whole speed range requires identification of

optimal current trajectory that maximizes torque output. The

typical PMSM current trajectory on id-iq plane can be divided

into four regions[1], as shown in Fig.1. Region 1 is the Max-

imum Torque per Amp (MTPA) operation which generates

the required torque with minimum phase current. Region 2

is when current trajectory moves away from MTPA curve

along the torque hyperbola. Region 3 is when flux weakening

operation begins and current trajectory moves along current

limitation circle. Region 4 is the Maximum Torque per Volt

(MTPV) operation which generates maximum torque possible

under inverter voltage limitation.

Many research have been conducted towards PMSM torque

control over whole speed range. In [2] an algorithm has been

proposed for torque control in Regions 1 and 4. However,

the proposed MTPA algorithm cannot perform well for ac-

curate torque control since there is no explicit relationship

between torque and phase current. In [3] a linearization based

optimization approach has been proposed for Regions 1 - 3

control where the current references can be obtained based

on torque command in MTPA operation; this allows accurate

torque control but MTPV control is not possible since voltage

constraint is over simplified. In [4]-[5], a Model Predictive

Control (MPC) based algorithm is proposed that achieves

Regions 1 - 4 control; however, weighting factor selection

for MPC influences the performance significantly, and thus,

the optimality of the current trajectory is hard to be proved.

In the methods proposed by [1][6][7], the basic idea is to

adjust id with terminal voltage feedback, and the performance

of controller depends on PI regulator tuning; here again,

the optimality of current trajectory is hard to be guaranteed

and one set of parameters cannot fit different machines. In

[8][9][10], the control problem is formulated as a constrained

optimization problem for which Lagrange Multiplier method

is adopted for calculation. Although optimality can be theo-

retically guaranteed, high computational complexity as shown

in the papers impedes these algorithms to be implemented in

a high bandwidth PMSM controller.

Therefore, the complexity of PMSM torque control lies in:

(1) Controller should be able to generate current trajectory

for whole speed range (i.e. Regions 1 - 4); (2) optimality

of current reference should be guaranteed so that maximum

torque is always generated; (3) computational complexity must

be low for high bandwidth controller design. However, none of

the algorithms reviewed has achieved the three requirements

simultaneously. The algorithm proposed in this paper improves

the geometrical linearization approach in [3] and solves for the

optimal current trajectory in a different way. With the proposed

algorithm, the above mentioned requirements (1) - (3) can be

achieved by a single control algorithm.

II. PROBLEM FORMULATION AND ALGORITHM

DESCRIPTION

PMSM torque control can be described by an optimization

problem as follows:

min
(id,iq)

∆T = | Tcmd −
3

2
P · iq · [λf + (Ld − Lq) · id] | ∀ωe

s.t.

{

(Rid − ωeLqiq)
2 + [Riq + ωe(Ldid + λf )]

2 ≤ U2
m

i2d + i2q ≤ I2m
(1)

where P, λf , Ld, Lq, R and ωe are machine pole pairs, PM flux

linkage, d-q inductances, winding resistance and rotor elec-



trical angular speed, respectively. Um, Im are the limitations

of inverter. The optimization problem solves for the (id, iq)

reference which minimizes torque error for all speed, taking

inverter current and voltage limitations as constraints.

Conventional method of using Lagrange Multiplier is quite

difficult to obtain closed-form solution for a nonlinear opti-

mization with nonlinear inequality constraints. The proposed

algorithm in this paper divides the optimization problem (1)

into two sub-optimizations and then solves them sequentially.

The first sub-optimization is to solve for a feasible set of a

problem that has torque error as the objective function with

only voltage as the constraint as given below.

min
(id,iq)

∆T = | Tcmd −
3

2
P · iq · [λf + (Ld − Lq) · id] | ∀ωe

s.t. (Rid − ωeLqiq)
2 + [Riq + ωe(Ldid + λf )]

2 ≤ U2
m

(2)

The feasible set is a portion of the torque hyperbola that

satisfies voltage constraint and is denoted by a range of id

id1 ≤ id ≤ id2 (3)

The second sub-optimization has torque error as the objective

function and solves for the problem from the feasible set (3)

with only current constraint as shown in (4)

min
(id,iq)

∆T = | Tcmd −
3

2
P · iq · [λf + (Ld − Lq) · id] | ∀ωe

s.t.

{

id1 ≤ id ≤ id2

i2d + i2q ≤ I2m
(4)

The problem is simplified compared with (1) when (2) and

(4) are solved sequentially. It will later be shown that solving

(2) and (4) by model linearization on (1) can further simplify

the optimization process. These two simplifications are at the

core of the proposed algorithm, which will be elaborated below

based on a typical current trajectory of PMSM (Regions 1 -

4).

III. GEOMETRICAL LINEARIZATION APPROACH

Assuming that the winding resistance R is small enough, the

torque equation is a hyperbola on the (id − iq) plane, while

voltage and current constraints are ellipse and circle, respec-

tively. Therefore, the optimization solution of (1) is the (id, iq)

pair inside both the voltage ellipse and the current circle, and is

closest to hyperbola at the same time. To simplify the problem,

Lemmens et al.[3] proposed an algorithm that linearizes torque

hyperbola and voltage ellipse on the operating point of PMSM

and solves for closed-form solution geometrically. Torque and

voltage linearizations are shown in (5).

dT =
3

2
P [(Ld − Lq)iq λf + (Ld − Lq)id]

[

did
diq

]

d|U | =
1

|U |
[RUd + ωeLdUq RUq − ωeLqUd]

[

did
diq

] (5)

With linearization, the optimization process changes from (id−
iq) plane to (did − diq) plane, on which torque incremental

and voltage incremental equations become lines, while current

limitation is still kept as a circle with center on (−idk,−iqk)

and radius Im as shown in (6), and (idk, iqk) is the result of

last optimization.

(did + idk)
2 + (diq + iqk)

2 = I2m (6)

The algorithm starts from searching the feasible set of (2)

which is the portion on torque hyperbola inside voltage ellipse

at the same time. Therefore, intersections between a hyperbola

and an ellipse needs to be solved, which is not straight forward

however. By torque linearization in (5), (2) is transformed

onto (did − diq) plane, where the objective function becomes

minimization of the error of required torque change, while

constraint becomes the voltage change caused by d-q current

change as shown by (7) where dTcmd = Tcmd − Tk with Tk

the torque output of last optimization and dT given by (5).

min
(did,diq)

∆dT = | dTcmd − dT |

s.t. [Lq(diq + iqk)]
2 + [Ld(did + idk) + λf ]

2 ≤ (
Um

ωe

)2

(7)

Solving the intersections between a line and an ellipse

is still not easy job. By using the variable transformation

in[5], voltage ellipse on (did − diq) plane can be further

mapped to a circle on a new transformed plane (di
′

d − di
′

q),

and the torque change is still a line on the new plane,

hence the intersections can finally be obtained for a line and

a circle which greatly simplifies the solution. The variable

transformations, the transformed voltage limitation and torque

incremental equation are shown in (8) and the final simplified

optimization on the (di
′

d − di
′

q) plane is shown in (9).

id = i
′

d −
λf

Ld

, iq = i
′

q

Ld

Lq

, L
′

d =
L2
d

Lq

, L
′

q = Ld

i
′2
d + i

′2
q = (

Um

ωeLd

)2

dT
′

=
3

2
P [(L

′

d − L
′

q)i
′

q λf + (L
′

d − L
′

q)i
′

d]

[

di
′

d

di
′

q

]

(8)

min
(di

′

d
,di

′

q)
∆dT

′

= | dT
′

cmd − dT
′

|

s.t. (di
′

d + i
′

dk)
2 + (di

′

q + i
′

qk)
2 = (

Um

ωeLd

)2
(9)

where dT
′

cmd = Tcmd−T
′

k with T
′

k the output torque expressed

by i
′

dk and i
′

qk. Once the optimal solution of (di
′

d, di
′

q) is

obtained, it needs to be transformed back to (did − diq) plane

and the second sub-optimization (4) can be linearized as (10)

to obtain the final optimization solution.

min
(did,diq)

∆dT = | dTcmd − dT |

s.t.

{

did1 ≤ did ≤ did2

(did + idk)
2 + (diq + iqk)

2 ≤ I2m

(10)

A typical PMSM current trajectory on (id − iq) plane over

the whole speed range is shown in Fig.1. A geometrical



Fig. 1. Typical current trajectory of PMSM over whole speed range.

optimization process of each Region is adopted to solve (9)

and (10) which will be elaborated below.

A. Region 1

Region 1 is MTPA operation at low speed. As discussed

before, the solution of (9) is the portion of torque change line

that is inside the voltage change circle on (di
′

d − di
′

q) plane,

as shown in Fig. 2(a). Once the feasible set is obtained and

converted back to (did − diq) plane, it is still part of torque

line but with a different range. If the required torque change is

within the current limit (Fig. 2(b)), the MTPA point is easily

obtained by finding the point in the feasible set which has the

shortest distance to the current circle center. If the required

torque change is larger than the current limit (Fig. 2(c)), the

optimal solution is the point on the current circle that has

shortest distance to the torque line.

Fig. 2. Geometrical optimization process for Region 1.

B. Region 2

Region 2 is when MTPA operation not feasible but the

required torque can still be generated. The feasible set will

first be obtained as in Region 1. In Region 2, the MTPA point

will not lie inside the feasible set and in this case, the point

in the feasible set that has the shortest distance to the current

circle center is chosen as the optimal solution (green dot closer

to circle center). The process is demonstrated in Fig. 3.

Fig. 3. Geometrical optimization process for Region 2.

C. Region 3

Region 3 is when PMSM enters flux weakening operation

and the output torque begins to drop. In Region 3, the feasible

set is totally out of the current circle (Fig. 4(b)) and the motor

has to operate under both current and voltage limitations. In

this region, the current circle will be maintained while the

voltage ellipse will be linearized based on (5), and the optimal

solution is the intersection between the line and the circle (Fig.

4(c)).

D. Region 4

In this region, the PMSM operates with MTPV and the

torque line does not have intersections with voltage circle as

it is shrinking. In this case, the only feasible point is the one

on the voltage circle closest to torque line (green dot in Fig.

5 (a)). After converting back to (did− diq) plane, the feasible

point will lie inside the current circle, which is taken as the

solution in this region (green dot in Fig. 5(b)).

Appendix in [3] provides an algorithm to find the optimum

solution with a line and a circle. Once the optimal value for

(did, diq) is obtained, they need to be converted to absolute

current reference by idq(k+1) = idq(k) + didq , and a current

regulator, such as PI regulator can be used to apply the current

reference.



Fig. 4. Geometrical optimization process for Region 3.

Fig. 5. Geometrical optimization process for Region 4.

IV. SIMULATION ANALYSIS

The simulation is conducted with a dyno setup where there

is a load machine to control the shaft speed, and the PMSM

is controlled under torque mode. The parameters used for the

simulation are given in Table I.

A. Current Trajectory Test

The test conditions of the simulation are listed in Table II.

Fig. 6 shows speed, torque and mechanical power output of

TABLE I
PARAMETERS OF THE PMSM UNDER TEST

Parameters Value

# of pole pairs 4

d-axis inductance Ld 80uH

q-axis inductance Lq 175uH

Flux linkage λf 0.036 vs

Stator resistance R 0.00525Ω (25°C)

Switching frequency 10 kHz

Imax 700A

DC bus 200V

TABLE II
TEST CONDITIONS OF SIMULATION A TO E

Tcmd(Nm) Speed(rpm)

Simulation A 172 0 - 12,000

Simulation B 350 0 - 12,000

Simulation C 172 varying

Simulation D varying 6,000

Simulation E ±172 ±1500

the PMSM. The figure shows that the PMSM can generate the

required torque below base speed, while beyond base speed,

the PMSM enters flux-weakening region. The output power

of the machine shows the transition from constant torque to

constant power operation. Fig. 7 shows the current trajectory

Fig. 6. Speed, torque and mechanical power output of the PMSM.

transition from Region 1 to Region 4 as discussed before.

In Fig. 8, two speed-torque envelope curves are compared.

The intrinsic capability (red curve) is obtained by solving the

original nonlinear optimization (1) with MATLAB function

fmincon() under the same configuration as the simulation; the

blue curve is the torque-speed envelope obtained following

the proposed algorithm. The result verifies that the proposed

algorithm has a good accuracy for solving the original non-



Fig. 7. Current trajectory.

Fig. 8. Comparison between speed-torque envelope obtained by fmincon()

and algorithm proposed.

linear optimization problem. In contrast, an algorithm that

generates sub-optimal current trajectory will have either lower

base speed or faster output torque drop or violations on inverter

voltage and current.

B. Operating with Voltage/Current Limitations

The simulation conditions are listed in Table II. In this

simulation, the torque command (350Nm) is higher than the

maximum torque that the PMSM can output for the given

current limit (255Nm). Therefore, the PMSM will reach both

maximum current and voltage limits during the operation.

Fig. 9 shows the current trajectory in this simulation, since

torque command is larger than the maximum value possible,

the output torque is limited. Fig. 10 shows the PMSM op-

erating within voltage and current constraints for the entire

operating speed range. The current limit is Im=700A, and

voltage limitation is Um= 115V which is the maximum phase

voltage applicable by SVPWM (Space Vector Pulse Width

Modulation). Fig. 11 shows the torque-speed envelope of the

PMSM in this situation, compared with Fig. 8, for a higher

output torque, the PMSM will operate with a lower base speed.

Fig. 9. Current trajectory.

Fig. 10. Motor phase current and voltage maintained within the limitations
for the whole speed range.

C. Dynamic Speed

The test conditions of this simulation are shown in Table II

for the purpose of verifying if the algorithm is able to solve

for the right current command under changing slope and value



Fig. 11. Torque-speed envelope of the PMSM.

of the speed reference. Fig. 12 shows the speed and torque

output of the PMSM. Having a constant torque command and a

varying speed, the machine operates in flux weakening region

at high speed with a reduced torque output, and follows torque

command in the low speed range.

Fig. 12. Constant torque dynamic speed test.

D. Dynamic Torque

The test conditions of the simulation are listed in Table II.

In this test, the motor speed is kept constant, while the torque

command is dynamically changed to test if the algorithm can

solve for the correct solution. Fig. 13 shows the simulation

results where the maximum torque output at 6000 rpm is about

143 Nm; below this torque, the PMSM can follow the ramp

and step changes of torque command, and has constrained

torque output by inverter current and voltage limitation, which

is not shown in the simulation since it is impractical.

E. Four Quadrant Operation

This test is conducted to verify if the algorithm can work

for all the four quadrants. Test condition is listed in Table II,

Fig. 13. Constant speed dynamic torque test.

where motor will operate for positive and negtive torque output

with forward rotation and positive and negative torque output

with reverse rotation. Fig.14 shows the simulation result which

verifies that the PMSM operates in all the quadrants.

Fig. 14. Four quadrants operation for PMSM.

F. Finite Speed Drive

The previous simulations are all conducted with current

limit (700A) larger than the motor characteristic current (
λf

Ld
=

450A), which makes an infinite speed drive. This simulation

tests if the algorithm also works for finite speed drive which

has current limit smaller than the motor characteristic current.

The test condition is shown in Table III. Fig. 15 shows speed,

torque and output power of the PMSM. For the finite speed

drive, output torque and power will drop fast during flux

weakening region and to zero at the maximum speed that the

motor can reach. Fig.16 shows the current trajectory of finite

speed drive operation, where MTPV control is not possible

and current will move along the current limit circle all the

way down till iq = 0.



TABLE III
TEST CONDITIONS OF SIMULATION E

Current limit(A) Tcmd(Nm) Speed(rpm)

Simulation F 200 172 0 - 14,000

Fig. 15. Speed, torque and power of the finite speed drive PMSM.

Fig. 16. Current trajectory of the finite speed drive PMSM.

V. CONCLUSION

The nonlinear optimization for PMSM torque control with

inverter current and voltage as constraints has been addressed

in the presented algorithm by simplifying the problem into

two sub-optimization problems. Instead of applying Lagrange

Multiplier, linearization of the sub-optimizations is adopted

and a geometrical method of solving the linearized optimiza-

tions is then proposed to deal with the calculation complexity.

Simulation results show that the algorithm is able to generate

current reference over the whole speed range and the solution

accuracy is remarkable compared with solving the original

nonlinear optimization problem. Since each of the two sub-

optimization problems is formulated as solving the intersection

between a line and a circle, the computation complexity is

quite low also. In this regard, the three requirements of PMSM

torque controller design described in the introduction can be

met simultaneously by the algorithm proposed in this paper.

Future work will be implementing the algorithm on a lab

PMSM dyno. The key of applying the algorithm is an accurate

machine model. For this purpose, a 3-D look up table has been

experimentally made for Ld and Lq .
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