
Comparative Study of PES Net and SyCCo Bus:

Communication Protocols for Modular Multilevel Converter

Hao Tu, Srdjan Lukic
FREEDM Systems Center

Department of Electrical and Computer Engineering

North Carolina State University, Raleigh, US

Email: {htu, smlukic}@ncsu.edu

Abstract—Due to its modularity and scalability, modular multilevel

converter is a promising topology for medium voltage applications, such

as energy storage or motor drives. Because of the large number of

modules, the wiring can become complex if the conventional star topology

communication network is used. To solve this issue, a communication

link that uses a ring topology to connect the central controller and the

modules provides an efficient solution. The information exchanged on

this link includes real time data, such as duty cycle, measurements and

fault feedback. Thus, a dedicated high-speed communication protocol is

needed. This paper reviews two possible protocols for modular multilevel

converter communication, PES Net and SyCCo bus. After introducing

the operating principles, their performance is compared and discussed.

SyCCo bus is implemented using Altera Cyclone IV FPGA. Tests are

conducted to analyze the communication delay of SyCCo bus. The

implementation is made open source.

I. INTRODUCTION

Modular multilevel converter (MMC) is a promising topology

for many medium voltage applications [1]. It offers several distinct

advantages over traditional converters. First, with its high number of

modules, the harmonic content in the output voltage is low. Smaller

output filter can be used compared to traditional converter. Also, if

a sufficient number of modules are stacked in series, the converter

can be connected to the medium voltage grid directly. The bulky

transformer which is needed for traditional converters can be elim-

inated. Furthermore, because of its modularity, MMCs can achieve

fault tolerant operation by bypassing the faulty modules. All of those

advantages are possible because of the large number of modules

in the MMC. For example, the more the modules, the more the

voltage levels thus the better the harmonic performance. However, the

control of MMCs becomes challenging with the increasing number

of modules.

In a conventional MMC topology, a central controller is used

to run the control algorithm [2]–[4]. The controller and power

electronics modules are connected using a star topology, i.e., the

controller has direct connections to all the modules. Every piece of

information exchanged between the central controller and module

has its own dedicated communication channel. When the number of

modules becomes large, the complexity, cost, and reliability of the

star communication link becomes an issue [5].

One alternative way to control the MMC is to employ ring topology

communication network between modules and the main controller. In

this communication network, a module only communicates with its

neighbor. The information exchange between the controller and the

module is realized with the help of other modules. Compared with

conventional star topology, this leads to a reduction of the number

of I/Os of the controller and simplification of the wiring. Another

advantage of this topology is that some part of the control algorithm

can be distributed to the modules, reducing the computational bur-

den of the central controller [6]. However, for this communication

network to work, a real time communication protocol is needed. The

efficiency of the protocol greatly influences the performance of the

converter.

In this paper, two communication protocols suitable for MMCs are

reviewed. They are Power Electronics System Network (PES Net)

and Synchronous Converter Control bus (SyCCo bus). PES Net was

developed at Virginia Polytechnic Institute. for the concept of power

electronics building block (PEBB) [7]. The idea is to build converter

systems using one basic module called PEBB [8]. Communication

as part of the PEBB should support system modularity. Hence, a

ring topology communication network is chosen. SyCCo bus was

developed at ETH Zurich for modular converter systems [9]. It shares

some common features with PES Net such as ring topology and

FPGA-based implementation. However, their operating principles and

synchronization methods are different, which leads to difference in

performance in terms of communication speed and synchronization

accuracy.

The contribution of this paper is twofold: First, this paper pro-

vides an apples-to-apples comparison of the two common protocols

for control and communication in power electronics applications,

pointing out the implementation saliencies and challenges of each.

Second, the paper presents a software and hardware reference design

for the implementation of the protocols. The implementation is made

available to the community through an open source repository located

at [10].

The reminder of this paper is arranged as follows: Section II

introduces the basic topology of the MMC and its communication

network topology. In section III the operating principles of PES Net,

protocols are reviewed. In section IV the features of SyCCo bus are

discussed. In section V the performance of PES Net and of SyCCo

bus are compared. The hardware implementation is introduced in

section VI. Section VII concludes the paper.

II. MMC TOPOLOGY AND COMMUNICATION NETWORK

Fig. 1 shows a simplified three-phase MMC diagram. Due to its

topology, MMC control mainly has three control targets. First, the

output current must be controlled to the reference value. Second, the

circulating current between phases should be controlled. Third, the

capacitor voltages in one arm should be balanced. To fulfill those

control objectives, the minimal information exchange between the

controller and the circuit includes gate signals and measurement

data such as the arm current and capacitor voltage. The information

exchange can happen either in a star topology or ring topology

communication network.

In a star topology communication network, one central controller

is connected directly with all the gate drivers and measurement

circuit. All the signals run in parallel. The star topology becomes

cumbersome if it is used in the modular multilevel converter. The

wires and interfaces become hard to manage if the number of



gR gL

gavgbvgcv3i
2i

1i

2uv 3uv

2lv 3lv

2ui 3ui

2li 3li

Module
+

-

Module
+

-

Module
+

-

Module
+

-

Module
+

-

Module
+

-

Module
+

-

Module
+

-

aL aLaL

aLaLaL
3i

2i

1uv

1lv

1ui

1li

Module
+

-

Module
+

-

Module
+

-

Module
+

-

1i

Fig. 1. Simplified circuit diagram for MMC

modules is large. Also, since all the data must be processed by

the central controller, this proposes a big challenge for the I/Os and

computational power of the central controller.

Unlike star topology, ring topology is an efficient alternative

communication approach for MMCs. In ring topology, each module

is connected in series as shown in Fig. 2. The central controller which

is the master in Fig. 2 only needs one pair of I/Os to communicate

with the first and the last module in the ring. The transmitter of

one module is connected to the receiver of the next module. Thus,

the serialized data can reach every module via this topology. It is

also easy for ring topology to achieve redundancy. Adding another

channel can avoid system failure caused by single point failure in the

communication system [11].

Ring topology communication network is widely used in industrial

automation. Two examples are MACRO developed by Delta Tau Data

Systems and Ethercat by Beckhoff GmbH. Both of them define a

high speed communication network using ring topology. However,

because they are general protocol designed for industrial automation,

the communication efficiency would be low if they are adopted

directly for the power electronics system communication without any

modification.

If a ring topology communication network is to be deployed

for power electronics systems, specifically MMC, several challenges

can be quickly identified. First, all the information exchange and

computation must be completed in one switching period. As the

switching frequency of today’s power electronics device can be

very high, the bandwidth of the communication should also be

high enough. Second, as each module in the MMC receives and

sends its information at different time instants, a synchronization

mechanism must be implemented to make sure all the modules

update their data at the same time. Last, to avoid system failure

caused by single point failure in the communication system, this

communication network should be at least single fault tolerant. To

meet the specific needs for power electronics systems, research

groups in Virginia Polytechnic Institute and ETH Zurich have adopted

the basic operating principle of MACRO and Ethercat, respectively,

to create their own communication protocols, namely PES Net and

SyCCo bus.

III. PES NET

PES Net was developed by Virginia Polytechnic Institute based

on communication protocol MACRO. It uses optical fiber as the

Master controller

Slave 1

Slave 2

Slave n

Fig. 2. Ring topology communication network

Master controller

Slave 1
Slave 2

Slave 3

Fig. 3. Simplified communication chain with a master controller and three
slaves

transmission medium and a bit rate as high as 125 Mb/s.

A. Fundamental operating principle

PES Net uses a ring topology. A simplified diagram with a master

controller and three slaves is in shown in Fig. 3. If the master wants to

send a message to a slave, for example slave 3, a data frame as shown

in Fig. 4 is constructed. The frame starts with an address identifier to

indicate it contains message to a specific slave. Then, the address of

the slave is given in the address field which is followed by the data

field. The frame ends with 2 bytes cyclic redundancy check (CRC)

field.

B. Fundamental operating principle

After the address identifier (not the whole frame) arrives at slave 1,

it checks the identifier and knows it is a data frame. When it receives

the address field, the slave will check if the address matches its own

address. If not, it will forward the frame to the subsequent slave. The

same action is performed by slave 2 and finally slave 3 receives this

frame. After slave 3 extracts the data in the frame, it will replace the

data part of the frame with its own measurement data and send it out.

Then the local measurement data from slave 3 would be received by

the master controller.

C. Synchronization mechanism

For PES Net, the master controller will send a data frame to each

slave in every switching period. After the slaves receive the messages,

it will not become effective instantly. Instead the slave will wait for

a synchronization signal. Upon receiving the synchronization signal,

the data received by all the slaves will be updated at the same time.

The synchronization is achieved by sending a synchronization frame

as shown in Fig. 5 . According to the frame structure, the address

of the last slave will be sent out first. Then, filler bytes are sent

out followed the address of the second last slave. If the number of

filler bytes is carefully chosen such that the transmission time of the



address

identifier

1 byte

address

field

1 byte

data

field

9 byte

crc

field

2 byte

Fig. 4. Data frame defined by PES Net

address

identifier

1 byte

address

n

1 byte

address

n-1

1 byte

filler

field

n
filler

 bytes

address

1

1 byte

Fig. 5. Synchronization frame defined by PES Net

filler bytes is equal to the delay between the last and the second

last slave, the two slaves will receive their addresses at the same

time. This signals the module to update the new data at the same

time. However, this technique has one drawback. The delay must be

multiple of the transmission time for a byte. With 125 Mb/s bit rate,

the transmission time for one byte (4B/5B) is Tbyte = 80 ns. The

worst case synchronization accuracy is limited to half of that, 40 ns

D. Cycle time calculation

For PES Net, the switching period must satisfy:

Tsw ≥ TDSP + Tdata + Tsync + Ttran (1)

where TDSP is the time that the master controller requires to finish

calculating the control algorithm; Tdata is the time to send the data

frame to all the slaves; Tsync is the time to send the synchronization

frame. Ttran is the transmission delay from the master controller to

the last slave.

Since each slave must receive its data frame from the master

controller, the total transmission time can be calculated as,

Tdata = ntdf (2)

where n is the number of slave nodes. tdf is the time to transmit one

data frame. If there are 13 bytes per frame then,

ntdf = 13Tbyte (3)

where Tbyte = 80ns.

For the synchronization frame there are n+ 1 bytes for addresses

and n− 1 fillers. Therefore,

Tsync = (n+ 1)Tbyte + (n− 1)Tfiller (4)

where Tfiller is the time to transmit the one filler between two slave

addresses. If there are nfiller bytes in one filler,

Tsync = (n+ 1)Tbyte + (n− 1)nfillerTbyte (5)

For the transmission delay, it consists of three components, the

propagation time through the optical fibers, the delay introduced by

transceiver and the delay of FPGA logic. The first component is

very small compared with the other two. Therefore, it is ignored.

Transmission delay may vary in a wide range depending on the

transceiver chip used and FPGA logic implemented. In [8], the delay

between two slaves Ts−s is measured to be 468 ns. With n slaves,

the delay from the master controller to the last slave is,

Ttran = nTs−s (6)

control

byte

1 byte

slave 1

data

N bytes

crc

field

1 byte

slave n

data

N bytes

crc

field

1 byte

crc

field

1 byte

Fig. 6. Data frame defined by SyCCo bus

Combined above equations,

Tsw ≥ TDSP + (14n+ 1 + (n− 1)nfiller)Tbyte + nTs−s (7)

For an MMC with 30 modules in total, assume nfiller and TDSP =
10 µs,

Tsw ≥ 71.64 µs (8)

Therefore, the maximum switching frequency,

fsw,max ≤ 13.9 kHz (9)

In practice, the switching frequency should be much lower than

fsw,max considering a safety margin and other unexpected delays.

IV. SYCCO BUS

The SyCCo field bus protocol is based on the Ethercat communica-

tion protocol. At the lowest level, SyCCo bus uses the physical layer

defined by Ethernet. In this way it takes advantage of the high speed

of Ethernet and does not require a custom lower level implementation.

As define by Ethernet, the bit rate ranges from 10 Mb/s to 10 Gb/s.

In this paper 100 Mb/s is used.

A. Fundamental operating principle

Similar to PES Net, SyCCo bus utilizes a ring structure to connect

the master controller and the slaves. Unlike PES Net, SyCCo bus

uses a concept called summation frame. Instead of sending frames

to each slave individually, the master controller only sends out one

frame which contains the messages to all the slaves. When the frame

arrives at a slave, the slave extracts the data that are addressed to it,

replaces that part of frame with its own data and then forwards the

frame to the next slave. A data frame for SyCCo bus is shown in

Fig. 6. The first byte is called control byte. Its function is to indicate

the frame to come containing data. Then a fixed number of bytes are

assigned to each slave followed by a CRC byte. Since this protocol

is highly customized, there is no need to provide the slave address in

the frame. The address of the slave is implied by the position of the

bytes. At the end of the frame, there is one byte CRC for the entire

frame.

In the original design [9], SyCCo bus has a different topology

from that in Fig. 2. Instead of connecting the last slave to the master,

the last slave is connected to the second last slave. The frame has

to go through all the slaves one more time before it is back to the

master. As we will show in section VI, this will greatly decrease the

communication speed because of the delay introduced by the physical

layer chips. Thus, the following analysis is done for SyCCo bus using

topology shown in Fig. 2.

B. Synchronization mechanism

SyCCo bus uses time-stamped method for synchronization. A 100

MHz clock is used for this purpose. During the configuration, the

master sends out a synchronization frame and notes the sending time

ttx,0. Then, a slave in the ring, for example slave i, would note the

time trx,i when the frame first arrives and the time ttx,i when the

frame is forwarded. The delay caused by the slave i can be calculated

by,



Master controller

Slave 1

Slave 2

Slave n

T
loop

T
delay,1

T
delay,2

T
delay,n

T
ave

Fig. 7. SyCCo bus time measurement for synchronization

Tdelay,i = ttx,i − trx,i (10)

When this frame goes through the ring and back to the master, the

master notes the time trx,0. The loop time of the frame is calculated

by,

Tloop = trx,0 − ttx,0 (11)

With Tdelay,i and Tloop, the average delay caused by signal

propagation between two slaves can be calculated,

Tave =
Tloop − ΣTdelay,i

n+ 1
(12)

where n is the number of slaves in the ring. After Tave is calculated

in the master, it is sent to all the slaves by another frame. With

this information, each slave i can calculate the time between slave i

receiving the frame and the last slave receiving the frame,

Ti−n = (n− i)Tave +

n−1∑

j=i

Tdelay,i + Tframe (13)

where Tframe is the time needed to transmit the frame. It only depends

the length of the frame and the bandwidth of the channel.

After slave i receives one frame, the data addressed to it is extracted

and stored in a shadow register. The data will be updated after a delay

Ti−n. In this way all the slaves will update the data at the same time,

and synchronization is achieved. Because the clocks used to measure

the time points is 100 MHz, the synchronization error is only 5 ns.

C. Cycle time calculation

Similar to (1), the minimal cycle time of SyCCo bus is calculated

by,

Tsw ≥ TDSP + Tdata + Ttran (14)

Note that there is no delay caused by synchronization frame in

SyCCo bus. Tdata is the time needed to transmit the summation

frame,

Tdata = (2 +

n∑

i=1

(Nbyte(i) + 1))T ′

byte (15)

where Nbyte(i) is the number of bytes of data for slave i. To compare

with PES Net, Nbyte(i) is 9 bytes here. If the bit rate is 100 Mb/s,

the time to transmit one byte T ′

byte is 80 ns.

Like PES Net, the third component in (14) Ttran depends on the

implementation and has to be measured. In the original design [9]

the transmission time for one master and two slaves is measured

to be 4.25 µs. The transmission delay between 2 modules T ′

s−s is

2.125 µs. In [12], the transmission delay between two slaves has

TABLE I
CYCLE TIME COMPONENTS FOR PES NET AND SYCCO BUS

PES Net SyCCo bus

Tdata 13nTbyte 31.2 µs (10n+ 3)T ′

byte
24.24 µs

Ttran nTs−s 14.04 µs nT ′

s−s 21.60 µs

Tsync (7n− 5)Tbyte 16.4 µs - -
TDSP - 10 µs - 10 µs
Tsw - 71.64 µs - 55.84 µs

Tsync,err - 40 ns - 5 ns

been reduced to 720ns. If we assume that the transmission delay is

proportional to the number of slaves, the Ttran is given by:

Ttran = nT
′

s−s (16)

Combine (14), (15), and (16)

Tsw ≥ TDSP + (10n+ 2)T ′

byte + nT
′

s−s (17)

For an MMC with 30 slaves and TDSP = 10 µs,

Tsw ≥ 55.76 µs (18)

Therefore, the maximum switching frequency,

fsw,max ≤ 17.9 kHz (19)

The key parameters of PES Net and SyCCo bus are listed in Table

I. The first term Tdata is the absolute minimum time for information

exchange. The second term Ttran is the transmission delay caused

by signal propagation, transceiver, and FPGA logic. Among them,

the delay caused by signal propagation is negligible compared with

that of the transceiver and FPGA logic. A good design should yield

a small FPGA logic delay. The third term Tsync is unique in PES

Net.

V. COMPARISON BETWEEN PES NET AND SYCCO BUS

Both designed for high speed communication for power electronics

systems, PES Net and SyCCo bus share a lot of similarities.

1) Both use a ring structure to minimize the number wires from

the master controller to the slaves.

2) Both employ slaves that receive and transmit the data frame at

the same time.

3) Both make use of FPGA to ensures the real time property of

the communication.

However, their basic operating principles are different. In PES Net

each slave has its own frame indicated by the address field while

in SyCCo bus all the slaves share a summation frame. Because of

the number of frames thus the number of overhead bytes sent by

PES Net is more than SyCCo bus, Tdata of SyCCo bus is smaller

than that of PES Net. Although the transmission delay of SyCCo bus

is slightly higher than that of PES Net, the synchronization frame

introduces extra delay for PES Net. The achievable minimum cycle

time of SyCCo bus is smaller than that of PES Net.

In PES Net the synchronization is achieved by sending a synchro-

nization frame every switching period. Because the synchronization

of the PES Net depends on the minimum filler size, the worst case

synchronization error between two nodes can be as high as 40 ns. In

SyCCo bus the synchronization is realized by calculating the delay

from one slave to the last slave. Because SyCCo bus uses a 100 MHz

clock to track the delay, its synchronization error can be much lower.

However, with 20 kHz switching frequency, 40 ns synchronization

error is only 0.08% of the switching period. Thus, both protocols

yield good performances in terms of synchronization.



Fig. 8. Hardware test setup

VI. HARDWARE IMPLEMENTATION

From Table I, it can been seen SyCCo bus offers better performance

than PES Net in terms of achievable minimum cycle time and

synchronization accuracy. Therefore, it is implemented using Terasic

DE2-115 development board with a Cyclone EP4CE115 FPGA. The

Verilog source code can be found in Github repository as in [10].

The development board features two RJ45 ports with physical layer

chip 88E1111 from Marvell. The PHY chip is selected to working

in 100 Mb/s MII mode. In this mode, 4 pairs of twisted wires are

used to transmit or receive data with a 25 MHz clock. Therefore, 4

bits of data(one nibble) are sent at the same time with a bit time of

40 ns.

To enable auto-configuration four types of configuration frames are

implemented. They are numbering frame, distributing frame, delay-

measuring frame and delay-distributing frame. During start-up, the

master sends out a numbering frame to number all the slaves starting

with zero. The first slave receives zero and store it as its ID. Then it

will forward this frame but add one to the ID field. After it is received

by the second slave, the second slave uses 1 as its ID and so on so

forth. After the frame goes around the whole loop, all the slaves are

numbered and the master receives the last slave’s ID plus 1. This

is the number of slaves in the loop. Then this number is sent out

by a distributing frame. With those two frames, all the slaves know

the number of slaves and what is its position in the communication

chain. Delay-measuring frame and delay-distributing frame are used

to measure the time delay and distribute it to all the slaves. As the

synchronization method has been introduced in section IV, it is not

repeated here.

In the FPGA a dual port RAM is implemented to enable the

information exchange between the main controller and the transmit-

ter(receiver). The main controller stores duty cycle for all the modules

in the transmitter RAM once they are available. The transmitter state

machine will fetch them automatically and construct the summation

frame. The received measurement data are stored in the receiver

RAM.

A. Test results

After the the protocol is implemented in FPGA, it is tested using

two slaves. Fig. 8 shows the experiential set-up. One DE2-115

development board is used as the master while the other is the first

slave. The second slave is implemented in Intel MAX 10 FPGA

Fig. 9. Hardware test waveform

88E1111 88E1111
ALTERA

Cyclone IV

ALTERA

Cyclone IV

88E1111

Master controller Slave 1

TX_EN TX_EN

TX_DATA[1] TX_DATA[1]

TX RX TX

Fig. 10. Simplified test setup block diagram

development board. This development board also has two RJ45 ports

with physical layer chip 88E1111 from Marvell. To have a better

view of the protocol operation, the length of data for each slave is

set to 2. Also, the length of control byte is set to 2. The test result

is shown in Fig.9.

As PHY chip is used as the lowest level transmitter, we do not

have access to the actual signal transmitting on the cable. The lowest

level signal we can get is the signal from the FPGA to PHY chip.

Fig. 10 shows the signals are coming from FPGA to PHY chip.

The green waveform is the transmitter enable signal of the master.

The brown waveform is the second bit of the transmitting nibble of

the master. At time t1 the master starts to transmit the data frame.

As the control byte for data frame is hexadecimal 5557, the second

bit is 0001 for those four nibbles. The following 2 bytes(4 nibbles)

are the data for slave 1. Then, 1 byte(2 nibbles) CRC is added for it.

Then same data and CRC field are repeated for slave 2. At the end

of the frame, 1 byte(2 nibbles) CRC is added for the whole frame.

The purple waveform is the transmitter enable signal of slave 1.

The blue one is the second bit of the transmitting nibble of slave 1.

At time t2 slave 1 starts to transmit the data frame. The first two

bytes control byte are the same as it coming from the master. The

data field for slave 1 has been changed. Because the slave extracts

the original data and replaces it with its measurement. The CRC field

for that data is also changed. The following 3 bytes remain the same

as they are for the second slave. Slave 1 simply forwards the message

without any changes. The last byte is different since any changes of

the frame will cause the change of the frame CRC.

B. Discussion

One important feature of the protocol is that slaves receive and

transmit data at the same time. This is can be seen from t2 to t3 in

Fig. 9. Slave 1 is still receiving the data frame from the master while

sending the preamble of the frame to the next slave. This greatly



improves the speed of the protocol. However, the bottle neck of the

communication speed is the delay caused by slaves.

From time t1 to t2 is the delay cased by one slave. It is around

600 ns. As shown in Fig.10 this delay is caused by PHY transmitter

delay, propagation delay, PHY receiver delay and FPGA logic delay.

This delay is critical to the communication speed as adding every

new slave will introduce an extra slave delay to the communication

chain. The propagation delay is negligible compared with other three

components. The PHY transmitter delay and PHY receiver delay

depend on the PHY chip used. The last component FPGA logic delay

is between 240 ns and 280 ns with current implementation. This is

6 to 7 nibbles time. The first five-nibble time is for receiving control

byte as the slave will not do anything until it confirms the type of

the frame. Another 1 to 2 nibble time is used to synchronize the

data from receiver clock to the transmitter clock. This is necessary

because most PHY chips working in in MII mode use different clocks

for transmitting and receiving. Depending on the phase difference

between the two clocks, the time is between 1 and 2 nibble time.

The theoretical minimum delay for the FPGA logic is 3 nibble times,

namely 120 ns. One nibble time delay to receive nibble and two

nibble time to synchronize the nibble.

Subtracted the FPGA logic delay from the total slave delay, we

can get the delay caused by the PHY chip transmitter and receiver to

be between 320 and 360 ns. This can be confirmed by the Marvell

88E1111 datasheet which gives a maximum transmitter delay of 72
ns and maximum receiver delay 248 ns.

With the 360 ns delay from the PHY chip and 120 ns delay from

the FPGA logic, the minimum delay for one slave can be reduced to

480 ns. If we re-calculate the minimum cycle time using (17),

Tsw ≥ 48.56 µs (20)

Therefore, the maximum switching frequency,

fsw,max ≤ 20.6 kHz (21)

If higher switching frequency, and therefore higher communication

speed is required, one option is to use GMII/RGMII mode with

1Gb/s bit rate. This can effectively reduce Tdata. One challenge is

that GMII/RGMII uses a 125 MHz clock to update the data. The

transmitted nibble must be strictly aligned with the positive edge of

the clock. However, as all the FPGA logic imposes some delay from

register to register, aligning the correct nibble at the positive edge

becomes cumbersome when the clock frequency is high. The logic

needs to be designed very carefully if GMII/RGMII mode with 1

Gb/s is used.

Another issue is that the delay caused by the transmitter and

receiver in GMII/RGMII will not be reduced compared with MII.

The maximum transmitter delay and the maximum receiver delay

are 84 ns and 208 ns, respectively, for GMII mode. This limits the

highest achievable communication speed.

VII. CONCLUSION

In this paper two ring topology communication protocols, PES Net

and SyCCo bus, are reviewed. Their operating principle is introduced.

Their performance is evaluated and compared in terms of minimal cy-

cle time and synchronization accuracy. The implementation of SyCCo

bus in Altera FPGA Cyclone IV is introduced in detail. The source

files are made open-source in [10]. The delays in the implementation

is discussed. The factors limiting the highest communication speed

in SyCCo bus are identified.

REFERENCES

[1] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Op-
eration, control, and applications of the modular multilevel converter:
A review,” IEEE transactions on power electronics, vol. 30, no. 1, pp.
37–53, 2015.

[2] A. Lesnicar and R. Marquardt, “An innovative modular multilevel
converter topology suitable for a wide power range,” in Power Tech

Conference Proceedings, 2003 IEEE Bologna, vol. 3. IEEE, 2003, pp.
6–pp.

[3] A. Antonopoulos, L. Angquist, and H.-P. Nee, “On dynamics and voltage
control of the modular multilevel converter,” in Power Electronics and

Applications, 2009. EPE’09. 13th European Conference on. IEEE,
2009, pp. 1–10.

[4] Q. Tu, Z. Xu, and L. Xu, “Reduced switching-frequency modulation and
circulating current suppression for modular multilevel converters,” IEEE

transactions on power delivery, vol. 26, no. 3, pp. 2009–2017, 2011.
[5] Y.-M. Park, J.-Y. Yoo, and S.-B. Lee, “Practical implementation of pwm

synchronization and phase-shift method for cascaded h-bridge multilevel
inverters based on a standard serial communication protocol,” IEEE

Transactions on Industry Applications, vol. 44, no. 2, pp. 634–643, 2008.
[6] C. Toh and L. Norum, “A high speed control network synchronization

jitter evaluation for embedded monitoring and control in modular mul-
tilevel converter,” in PowerTech (POWERTECH), 2013 IEEE Grenoble.
IEEE, 2013, pp. 1–6.

[7] I. Milosavljevic, Z. Ye, D. Boroyevich, and C. Holton, “Analysis of
converter operation with phase-leg control in daisy-chained or ring-type
structure,” in Power Electronics Specialists Conference, 1999. PESC 99.

30th Annual IEEE, vol. 2. IEEE, 1999, pp. 1216–1221.
[8] T. Ericsen, “Power electronic building blocks-a systematic approach

to power electronics,” in Power Engineering Society Summer Meeting,

2000. IEEE, vol. 2. IEEE, 2000, pp. 1216–1218.
[9] C. Carstensen, R. Christen, H. Vollenweider, R. Stark, and J. Biela,

“A converter control field bus protocol for power electronic systems
with a synchronization accuracy of±5ns,” in Power Electronics and

Applications (EPE’15 ECCE-Europe), 2015 17th European Conference

on. IEEE, 2015, pp. 1–10.
[10] H. Tu. (2017, June) Verilog source code

for mmc communication. [Online]. Available:
https://github.com/htuNCSU/MmcCommunicationVerilog

[11] C. Toh and L. Norum, “Implementation of high speed control network
with fail-safe control and communication cable redundancy in modular
multilevel converter,” in Power Electronics and Applications (EPE),

2013 15th European Conference on. IEEE, 2013, pp. 1–10.
[12] A. Hillers, H. Tu, and J. Biela, “Central control and distributed pro-

tection of the dsbc and dscc modular multilevel converters,” in Energy

Conversion Congress and Exposition (ECCE), 2016 IEEE. IEEE, 2016,
pp. 1–7.


