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Abstract—An active damping method for Thomson coil actuated
ultrafast mechanical switches is proposed, including its control.
Ultrafast mechanical switches are crucial for both dc and ac circuit
breakers that require fast-acting current-limiting capabilities.
However, fast motion means high velocity at the end of travel
resulting in over-travel, bounce, fatigue, and other undesirable
effects. The active damping proposed in this paper not only
avoids such issues but actually enables faster travel by removing
limitations that would otherwise be necessary. This active damping
mechanism is applicable in particular to medium- and high-voltage
circuit breakers, but can be extended to actuators in general. A
15 kV/630 A/1 ms mechanical switch designed to enable the fast
protection of medium voltage dc circuits is used as a testbed for the
concept. The switch is based on the principle of repulsion forces
(Thomson coil actuator). By energizing a second coil, higher open-
ing speeds can be damped, resulting in limited over-travel range
of the movable contact. The overall structure is simple and the
size of the overall switch is minimized. To validate the concept and
to study the timing control for best active damping performance,
both finite element modeling and experimental studies have been
carried out.

Index Terms—Active damping, dc circuit breaker (DCCB), finite
element method (FEM), hybrid circuit breaker, repulsion coil actu-
ator, Thomson coil actuator, ultrafast mechanical switch (UFMS).

NOMENCLATURE

DCCB DC circuit breaker.

UFMS Ultrafast mechanical switch.

CS Commutating switch.
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MB Main breaker.

MOV Metal–oxide varistor.

IGBT Insulated-gate bipolar transistor.

TRV Transient recovery voltage.

FEM Finite element method.

IEEE Institute of Electrical and Electronics Engineers.

I. THOMSON COIL ACTUATED UFMS FOR HYBRID DCCB

M
EDIUM- and high-voltage hybrid DCCBs combine elec-

tronic switches with mechanical switches in parallel

[1]–[6]. They consist of four primary components for current

conducting, commutation, and interruption as shown in Fig. 1;

an UFMS or disconnector, a low-voltage solid-state switch as

the CS, a high-voltage solid-state switch as the MB and MOVs.

The high-voltage solid-state switch is composed of antiseries

IGBTs, denoted as two IGBT symbols with diodes in the di-

agram. They in fact represent strings of devices to meet the

requirement of the nominal voltage rating. The hybrid solid-

state DCCB scheme that exploits a low-voltage CS in series

with an ultrafast mechanical disconnector provides an ultrafast

and highly efficient protection solution to power systems [2],

[4]. In normal conduction, the current flows through the nomi-

nal path that consists of UFMS and CS. In order to interrupt a

fault current, first the CS turns off in a few microseconds and

commutates current into the MB in a few tens of microseconds.

The UFMS opens and forms a gap between its contacts that can

withstand the high voltage that will result from the subsequent

turn-off of MB.

Though the hybrid circuit breaker concept was originally pro-

posed to interrupt a dc circuit, it fits ac applications as well.

As a matter of fact, since the interruption operation is fin-

ished as fast as in a couple of milliseconds, it is faster than

usual ac periods (at 50 or 60 Hz), such that an ac circuit acts

like a dc circuit as far as the hybrid circuit breaker is con-

cerned. Because of the subquarter cycle operation, the hybrid

circuit breaker can, therefore, also limit the fault current in ac

circuits.

The effectiveness of these hybrid ac and dc circuit breakers is

predicated on the mechanical switch opening as fast as possible

to obtain a sufficient gap between the open contacts, so that they

can withstand the TRV following current interruption. This is

because the total interruption time of the hybrid circuit breaker

is dominated by the operation speed of the UFMS in such hybrid

circuit breakers [1], [2], [7]–[10].
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Fig. 1. Hybrid DCCB.

Fig. 2. Diagram of the Thomson coil actuator based fast mechanical switch.

Fig. 3. Design of the UFMS.

The switches used in this type of circuit breakers are typically

based on electromagnetic repulsion forces with current induced

in a conductive copper disc (so-called Thomson coil actuator)

[7], [8], [10]. The switch actually comprises two coils, one for

the opening operation and one for the closing operation, located

on either side of the copper disc (above and underneath, Figs. 2

and 3. To open the UFMS, the opening coil is energized so

that a strong magnetic field is generated, which penetrates into

the conductive disc. This time varying magnetic field induces

azimuthal eddy currents in the disc which in turn create an

opposing magnetic field. These two fields oppose each other

and a repulsive force is generated between the coil and the disc.

Closing is obtained in a similar manner with the lower coil.

In this paper, an active damping mechanism and its con-

trol are proposed for this type of actuator, aiming to extend

the practical limit of the operating speed by damping exces-

sive energy out of the moving mass, and this is achieved by

energizing the closing coil at the end of opening operation to

stabilize the movement against possible over-travel and bounc-

ing at high-speed operations. In doing so it becomes possible

to actually excite the opening coil to higher levels, resulting

in overall faster operation than would be possible without the

active damping. This result will contribute to achieving ultra-

fast operation for the switches and, therefore, the hybrid DCCB.

With this control, superior performance is achieved. Further, the

structure remains simple without adding extra damping mecha-

nisms. Smaller vacuum interrupters can be used and the size of

the overall switch remains compact. Work on a similar concept

was recently published [11] indicating that others working on

the issue of dc current breaking are facing the same difficulties.

Similarly, in [10], the velocity of the moving part is seen in-

creasing up to the end of motion, reaching a high 5–6 m/s, with

no damping mechanism included in the design to absorb the

corresponding kinetic energy upon end-of-motion impact. This

paper adds to the literature a comprehensive parametric analysis

as well as experimental investigations. The experimental study

provides valuable quantitative results on different combinations

of driving conditions of the opening and damping operations.

The paper includes finite element modeling of the active

damping transients and test results obtained on a 15 kV/630

A/1 ms mechanical switch. The actuator design used in this pa-

per is described in details in [8], and the drive circuits have been

discussed in [9].

II. RECLOSING ISSUE WITH PASSIVE DAMPING MECHANISM

The general issue addressed in this paper is the design of

effective, reliable damping mechanisms to absorb the kinetic

energy due to fast opening. Mechanical means are effective, but

need to be tuned to the energy imparted to the system during

opening. Not enough damping can lead to damage, and too

much generates bounce and long effective travel time. If the

bounce is large enough, the system recloses (opening failure).

Therefore, a fixed damping can actually limit the opening energy

and lengthen the travel time, by forcing the designer to use a

level of energy below that which will lead to bounce. This was

observed during initial tests of a prototype switch (shown in

Fig. 4). In order to illustrate this, Fig. 5 shows a successful

opening with a capacitor bank that is precharged to 400 V. The

displacement curve is linear, overshoots, and finally settles at

a steady-state open position. When driven by 420 V, however,

see Fig. 6, the travel is initially faster but at the end of the

travel and following the overshoot the switch does not stay at a

steady-state open position. Instead it bounces back toward the

closed position and the opening operation fails. The specific

mechanism used in the experiments used nonlinear disc springs
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Fig. 4. UFMS prototype. (Base plate is approximately 30 cm × 30 cm.)

Fig. 5. Successful opening driven by 400 V.

Fig. 6. Opening driven by 420 V followed by a reclosing.

(see [4] for a more detailed description of the design). Other

mechanisms are possible [13]–[16] but all are expected to suffer

from the same limitation due to their being set at the design

stage, with no feedback control possible. With damping disc

springs a few factors can affect the damping process, which are

as follows.

1) The kinetic energy of the moving mass. Most of the energy

is to be absorbed by the disc springs.

2) The nonlinear load-versus-deflection characteristic of the

disc spring (see [8]) and how much energy the disc spring

can absorb. The disc spring provides holding forces both

at the open and closed positions, which correspond to

Fig. 7. Multiphysics interaction in the actuator.

different operation points on the load-versus-deflection

curve.

3) The allowable over-travel during opening. Two compo-

nents limit this over-travel range: The vacuum interrupter

and the disc spring. A longer over-travel results in larger

sizes for both components and, therefore, the overall size

of the switch assembly.

III. PROPOSED ACTIVE DAMPING FOR THOMSON COIL

ACTUATED SWITCHES

This paper proposes an active damping method that utilizes

the Thomson coils of such an actuator and does not require extra

mechanical complexities in structure and design.

When the mechanical switch is to open, a large amount of

energy is dumped into the opening coil, part of which is trans-

ferred to the movable mass as kinetic energy for acceleration. In

the proposed method, as the fast opening is completed and the

required gap is obtained, the closing coil is energized and used

as a damping coil to generate a reverse, braking force that slows

down the movement. Then, the disc spring can easily handle

the remaining kinetic energy and secure the moving parts in the

open position.

The approach is developed here in the context of repulsion

coils. It can be extended, at least in principle, to any actuator with

two (or more) coils acting in opposite directions. Some work in

that area was done, for instance, on actuators with permanent

magnets [17]–[19].

The research was carried out first by comprehensive transient

FEM simulation, complemented by experimental evaluation.

The physical equations solved by COMSOL include Maxwell’s

equations in the opening coil, the closing coil, and in the con-

ductive disc, as well as the mechanical balance of force between

the electromagnetic forces as derived from Maxwell’s, spring

forces, gravitational forces, and friction losses.

These supporting equations have been published in the pre-

vious work completed under this project [20], and similar equa-

tions were provided elsewhere [10].

The FEM modeling includes different physics (electromag-

netic, mechanical, and thermal), see Fig. 7. The mechanical

actuator is designed for a 630 A prototype at medium voltage

range (15–50 kV). The model geometry is shown in Fig. 8. Two
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Fig. 8. 3-D view of the FEM model.

Fig. 9. Induced current in the disc, 60 µs after energizing the opening coil,
simulation in axisymmetric 2-D view.

typical snapshots of the simulated transients are presented in

Figs. 9 and 10 to illustrate the eddy currents induced in the con-

ductive copper disc upon the energization of the opening coil

and the damping coil, respectively.

Fig. 11 shows four displacement curves in different opera-

tions. The red curve shows the gap opening transient when the

opening coil is driven by a moderate voltage level of 355 V. The

travel reaches 3 mm at 2 ms and settles to a steady-state position

of approximately 7–8 mm with 1.5 mm overshoot. When open-

ing voltage is as high as 415 V (the purple curve), the moving

contact overshoots more than 2 mm and recloses because the

excessive kinetic energy is not damped out by the mechanical

structure. In this case, the reclosure is avoided when using active

damping (the blue curve). Therefore, the active damping method

is proved to enable higher speed operation and prevent reclosing

during opening operations. The light blue curve shows that with

the active damping, opening voltage can be even higher, such as

430 V, so that faster opening operation can be achieved.

Fig. 10. Induced current in the disc, 440 µs after energizing the damping coil,
simulation in axisymmetric 2-D view.

Fig. 11. Damped and undamped operations.

IV. DESIGN OF THE ACTIVE DAMPING CONTROL

The general principle of active damping was presented in

Section III. This section addresses how to design the damping

control, or in other words when and by how much the damp-

ing coil should be energized. For a given pulse of the opening

coil, there are a few variables in the damping pulse that can be

changed to achieve the best performance for a given design of

an UFMS. They correspond to the timing, magnitude, and shape

of the damping pulse, the magnitude and shape being controlled

by the capacitance and voltage of the capacitor bank exciting the

damping coil. If the same capacitor bank is used for both open-

ing and closing operation, as is preferable for simplicity and to

minimize cost, it is also the same for the damping operation.

Therefore, timing is the most convenient parameter to affect the

damping performance. Voltage and capacitance may be used as

additional degrees of freedom, if their impact on performance

justifies the extra complexity.
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Fig. 12. Driving force (from 0 to 2 ms) and damping forces (from 2 to 4 ms),
simulation results.

Fig. 13. Speed and displacement curves corresponding to Fig. 12 forces,
simulation results.

Figs. 12 and 13 illustrate the active damping effects, as cal-

culated by transient FEM modeling when the braking coil is

energized at different times, with the same voltage and capac-

itance. Referring to Fig. 12, a negative force accelerates the

moving mass, starting at time 0. Then, a positive force later

dampens the movement, starting at time 2 ms or later (several

model runs are superimposed on the same graph, all starting

with the same opening pulse). Fig. 13 shows the corresponding

displacements (solid traces) and velocities (dashed curves).

With a capacitor bank of 2 mF pre-charged to 400 V, the

actuator is accelerated to 2.6 m/s (see Fig. 13). At 2 ms, the gap

in the switch reaches 4.5 mm, which can withstand 60 kV. A

sweep of delay times from 2.0 to 3.0 ms is presented in Figs. 12

and 13, and the following observations can be made.

1) Energizing the braking coil has an immediate effect

to dampen the opening movement. Braking, therefore,

should not be initiated before the specified gap and

opening time are reached, 4.5 mm and 2 ms, respectively,

in this case.

2) The later the damping coil is energized, the closer the

copper discs proximity is to the damping coil at time of

actuation, therefore, the damping force increases. Con-

versely, with shorter delays, the disc may be too far for

the damping coil to have any substantial effect, the disc

being out of range, so to speak. The largest peak damping

force was obtained with a 3-ms delay. It is 160% of the

one with a 2-ms delay.

There is, therefore, an opportunity for optimization, with

later pulses being more powerful, but intervening farther

in the travel. Fig. 13 shows when the damping force starts

to operate, and also shows the position at which the disc

comes to a stop.

3) An earlier damping pulse results in a weaker force and

takes a longer time to reduce the kinetic energy of the

moving mass. But the travel is limited to a smaller range

(the disc stops at position 6 mm at time 4 ms).

4) A later damping results in a stronger force, takes a shorter

time to reduce the kinetic energy of the moving mass.

However, the movable contact tends to travel further

(7.7 mm at 4 ms).

V. EXPERIMENTAL TESTS OF ACTIVE DAMPING

Experimental tests were performed on a Thomson coil actu-

ated UFMS to verify the active damping approach and the FEM

model. These results provide additional validation of both the

calculated parameters of active damping, and the interactions

that occur between the coils and the conductive disc.

A. Test Setup

A prototype of a Thomson coil actuated UFMS and associated

driving mechanism was used to test the active damping approach

in a laboratory setting. More details regarding the mechanical

switch can be found in [8]. The closing coil was used as the

damping coil; two capacitor banks of the same capacitance were

independently controlled by two thyristor switches to energize

the opening coil and the damping coil. The physical setup is

shown in Fig. 14.

The test setup allows incremental variations of the opening

coil voltage, damping coil voltage, and trigger delay between

the opening and damping current pulses. Testing has been con-

ducted using the parameters listed in Table I. Figs. 15 and 16

show which combinations of parameters led to a successful

opening, and which led to reclosure.

B. Measurement and Control of Test Setup

A high-level measurement and control diagram shown in

Fig. 17 represents the control inputs and measurement outputs

from the prototype test bench. Two power supplies charge the

opening and closing coil capacitor banks, which are then dis-

charged through the Thomson coils via power thyristors. The

user inputs and control, annotated in green in Fig. 17 control

the timing delay and voltage applied which is a variable for
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Fig. 14. Test setup of the active damping method.

TABLE I
COMBINATIONS OF OPENING VOLTAGES, DAMPING VOLTAGES, AND DAMPING

DELAYS TESTED

Opening voltage Damping voltage Damping delay

355 V 322 V 2.0 ms
370 V 345 V 2.2 ms
385 V 365 V 2.4 ms
400 V (for selected

opening voltage
and delay values)

2.6 ms

415 V 2.8 ms
430 V 3.0 ms

experimentation. In red, the measurements of the system mainly

include: Currents of the opening and closing coils via a Ro-

gowski coil and the displacement from a linear potentiometer

mounted to the moving shaft.

The voltage signal generated by the displacement sensor indi-

cates the travel, and the derivative of this signal is the velocity.

Together these measurements are used to track the position,

speed, and signals associated with operation with respect to

time. The test bench offers great flexibility in operating the

UFMS switch under variable conditions to systematically test

various operating conditions.

C. Comparison of COMSOL Simulation With Test Results

Simulation accuracy is verified through comparison of the

COMSOL multiphysics simulation and the actively damped

UFMS test-bench experimental results. Fig. 18 shows the com-

parison of a 400 V opening and 345 V damping simulation with

experiment. Two cases are shown corresponding to damping–

pulse delays of 2.0 and 3.0 ms. The timing, velocity, and overall

shape of simulated and test-bench results verify the accuracy

of the model after the 1 ms point. Deviation between sim-

ulated and experimental data within the first millisecond are

Fig. 15. Opening operations with varying opening voltages and damping
delays with a damping voltage of 322 V.

Fig. 16. Opening operations with varying opening voltages and damping
delays with a damping voltage of 345 V.

likely due to the following sources of error not accounted for in

modeling.

1) Stiction of the two physical bodies that requires additional

force to overcome stationary friction prior to beginning

motion. The simulation did not include stiction.

2) The mechanical spring in use is a disc spring that has

a nonlinear force-deflection characteristic. Although the

spring and its nonlinearity were modeled, its exact char-

acteristic may have lacked precision over a portion or all

of the spring force–displacement curve.

3) Contact slippage or lag of potentiometer position sensor

due to the rapid acceleration of the moving mass.

4) The COMSOL simulation predicts force which is then

compared to motion, amplifying any error in the double

integral.
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Fig. 17. Measurement and control diagram of the Thomson coil actuated,
actively damped, UFMS.

Fig. 18. Comparison of experimental test-bench results to COMSOL simu-
lated results.

D. Contribution of Opening Voltage

The impact of opening voltage for a fixed damping delay (ei-

ther 2 or 3 ms) is shown as displacement curves in Figs. 19–22.

Also shown in the figures, for reference, is one trace correspond-

ing to the current pulses in the opening and damping coils. The

force exerted on the movable mass for opening and, therefore,

the acceleration of the opening contacts are controlled through

the opening voltage applied to the opening coil. Increasing this

opening voltage and, therefore, the magnitude of the current,

which flows through the opening coil, results in higher speeds

being achieved during opening operation. However, this also

results in greater kinetic energy that must be damped out of the

system. The figures show traces for opening voltages ranging

Fig. 19. UFMS motion for various opening voltages, with 2.0 ms damping
delay and 322-V damping voltage.

Fig. 20. UFMS motion for various opening voltages, with 2.0-ms damping
delay and 345-V damping voltage.

from 355 to 430 V. Lower opening coil voltages, such as 340 V,

are insufficient to open at all.

The variable voltage operations show that 3.0 ms damping

is adequate to prevent reclosing of all test voltages as shown

in Figs. 21 and 22. Given that the opening voltage was varied

from 355 to 430 V, this indicates a very favorable robustness

for the system. That is, the system is able to guarantee a suc-

cessful opening over a wide range of parameters, an important

consideration for a device that is expected to perform reliably

over a long period of time in varying environmental and other

conditions.

With a shorter delay (the damping pulse starting at 2 ms,

Figs. 19 and 20, opening fails (large bounces leading to reclo-

sure) if the damping pulse is too strong, see for instance traces

415 and 430 V in Fig. 19. This is primarily due to the distance

from the damping coil at time of current flow. At 2.0 ms, the
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Fig. 21. UFMS motion for various opening voltages, with 3.0-ms damping
delay and 322-V damping voltage.

Fig. 22. UFMS motion for various opening voltages, with 3.0-ms damping
delay and 345-V damping voltage.

conductive disc is not within an effective range of the damping

coil and cannot transfer enough kinetic energy to the damping

coil. The excess kinetic energy remaining in the moving mass

is too large for the disc spring to absorb, resulting in under-

damping and eventual rebound, or reclosing of the switch.

E. Contribution of Damping Voltage

The effect of the damping voltage is shown in Fig. 23. Within

the range of 322 to 365-V damping voltages, the system opened

the contact successfully. Further, it can be observed that the

damping voltage has a significant impact on the amount of

overshoot.

In terms of design, the damping coil is the same used for

closing the actuator after the fault has been cleared. It appears

that it may be desirable to have two different voltage levels in

Fig. 23. UFMS motion for various opening and damping voltages, with
3.0-ms delay.

Fig. 24. UFMS motion for various damping pulse timings with 430-V opening
voltage and 322-V damping voltage.

the design: For normal closing operation, the voltage should

be smaller, simply large enough to close the switch reliably

and avoid slamming and damage. However, higher closing coil

voltages may be preferable for damping operations.

Having two operating voltages for this coil, one for normal

closing and one for damping the opening pulse can be imple-

mented with no additional complexity to the physical switch or

driving mechanisms.

F. Contribution of Damping Pulse Timing

How the time delay affects the damping transients is shown

in Figs. 24 and 25.

In both cases of 322 and 345-V damping voltages, a shorter

pulse delay (comparing 2 with 3 ms) would generate a slightly

higher overshoot in the traveled distance and relatively larger

oscillation magnitudes later on. This is because at 2 ms the

moving disc had not yet arrived in the most effective region
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Fig. 25. UFMS motion for various damping pulse timings with 430-V opening
voltage and 345-V damping voltage.

Fig. 26. UFMS velocity pattern for various opening voltages, with 2.0-ms
damping delay and 322-V damping voltage.

for the damping coil to absorb the kinetic energy. However,

the length of the damping period for an early damping pulse is

longer than the one for a late one.

Figs. 26 and 27 show velocity plots. Two observations can

be made: With increased opening voltages, faster peak speeds

are obtained, resulting in faster operation. Yet at the same time,

with increased opening voltage, the effectiveness of the damping

pulse with the same damping voltage and delay is increased.

This is because a higher opening voltage drives the moving

mass closer to the damping coil within the same period of time.

VI. DISCUSSIONS

In summary, the following lessons have been learned during

the simulation and test bench prototype study completed in this

research.

1) Thomson coil actuators provide ultrafast operation, and if

two coils are present, the second coil can provide effec-

Fig. 27. UFMS velocity pattern for various opening voltages, with 3.0-ms
damping delay and 322-V damping voltage.

tive active damping without increasing physical system

complexity.

2) With active damping, faster opening can be obtained by

increasing the opening energy voltage with no risk of

bounce or contact reclosing.

3) Eddy currents are generated in the conductive disk due

to the time varying magnetic field, therefore, rise and fall

time of the current in each coil is of key importance. A

high-energy discharge due to large voltage in the capacitor

bank through a small number of turns ensures a high di
dt

and, therefore, a strong repulsive force between the coil

and the conductive disc.

Successful and effective active damping is predicated pri-

marily on the relative position of the conductive disk when

the second coil is actuated. The appropriate distance to acti-

vate the second coil is a function of the current rise time and

the speed of the conductive disk. In the simulation and exper-

imental results presented in this paper with a large capacitor

bank and a very low number of turns in the coil, current rise

happens relatively immediately compared to the mechanical

motion of the disc as shown in Figs. 19–22. Therefore, ac-

tuation of the damping coil is optimal near the very end of

travel.

Potential future deployments of this technology will benefit

from a better understanding of the limits of this approach in

terms of how much faster such a Thomson coil actuator could

operate and then ensuring the repeatability over time of such

performance enhancement. The mechanical endurance of the

other components such as the vacuum interrupter need to be

examined. This reliability testing is critical for the practical use

of the method beyond the laboratory.

In the end, this paper concludes that damping at the end

of motion can actually be used to design yet faster actuators.

While we demonstrated this in the context of Thomson coil

actuators, there are reasons to believe that this could apply to

other actuators as well, particularly when two coils are present.
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VII. CONCLUSION

A novel active damping mechanism has been proposed to ad-

dress the reclosing issues observed during high-speed operation

of Thomson coil actuated fast mechanical switches. The con-

cept has been verified by a comprehensive transient FEM model

based on coupled multiphysics involved in the operation, and

with validation from experiments carried out on a dc breaker

prototype. Fig. 11 shows a clear demonstration of how the ac-

tive damping method can stabilize the fast opening operation

and the potential of achieving much higher opening speeds.

An important contribution of this paper is that active damping

helps absorb kinetic energy and minimizes the side effects of

high actuator speed. It also makes it possible to select operating

parameters that lead to faster, yet reliable, operation.

Evaluation of different damping delays for a particular design

has been presented. It is found that earlier damping pulses result

in weaker damping forces, whereas later damping pulses gener-

ate stronger forces because the disc and coils are closer to one

another at the onset of the braking pulse. The optimization of

the damping pulse should be a function of the design specifics,

including the layout of the coils and the moving disc, as well as

the disc spring characteristics.
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