Research & Technology Trends in Electric Machine Design for Operation with Variable Speed Drives

Md Ashfanoor Kabir
PhD Candidate
Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC, USA
Presentation Outline

NRE Electric Machines for EV/ HEVs
- Fully-pitched MCSRM with standard VSI
- Concentrated Wound Segmented Rotor SRM (SSRM)
- Accomplishments and Next Steps

High Performance Reluctance Drives with standard VSIs
- Multilayer (ML) AC Winding for Efficiency Improvement
- Application of ML Winding for SynRM Design
- Accomplishments and Next Steps

Technology Trends and Research Directions
- Cost-effective Efficiency & Performance improvement
- High P_{Den}, High Speed Motors with WBG Drives
- Integrated Motors for Industrial Automation
NRE Electric Machines for EV/HEVs

EV/HEV Growth and Trends

- Plug-in vehicles growth is 20 times faster than others
- Traction motor demand (high T_{den}, P_{den}, η): proportional
- IPMSM most popular candidate with rare-earth (RE) PMs
- RE materials’ price & supply: HEV mass production issues

Traction Motor Challenges & Opportunities

- China mines 80% of the world’s rare-earth materials
- China 2016 PEV sales growth: +85% compared to 2015
- RE price hike in July 2015 as China boosts RE reserve
- Research on NRE alternatives are essential

1 “Rare earths prices rise as China builds reserves” article on mining.com, June 20, 2016
NRE Electric Machines for EV/HEVs

SRM for Traction Application
- Robust rotor, high speed, high temp., wide CPSR
- Unipolar operation, unconventional converter
- High torque ripple and acoustic noise

Research Objective
- Design of SRM using 3-phase standard VSI for EV/HEVs
- High T_{den} and wide CPSR: competitive traction specifications
- **Mutually Coupled SRM (MCSRM)** with fully pitched winding
- Bipolar/ sinusoidal operation, 3-phase standard VSI

MCSRM for Traction Application
- EM torque, $T_a = \frac{1}{2}\left(i_a^2 \frac{dL_{aa}}{d\theta} + i_a i_b \frac{dM_{ab}}{d\theta} + i_c i_a \frac{dM_{ca}}{d\theta}\right)$
- Phase back EMF, $E_a = \left(\frac{dL_{aa}}{d\theta} i_a + \frac{dM_{ab}}{d\theta} i_b + \frac{dM_{ca}}{d\theta} i_c\right) \omega$
- Optimization required at both ω_{Base} & ω_{Max}

(left) Conventional SRM and (right) MCSRM
Design of MCSRM for Traction Application

Analytical air-gap flux and inductance are derived from winding spatial distribution and pole shapes

(left) MCSRM Winding spatial distribution, (right) differential flux linkage

Phase Inductance

\[L_m = \frac{\lambda_{Am}}{I_A} = \mu_0 \frac{N_{Turn}^2}{2g} L_{stk} \cdot \beta \]

Here, \(\beta = r \cdot d\theta \), rotor-stator length of overlap

Self-inductance, \(\beta = \beta_L \), sum of overlapping length \(x \) & \(y \)

Mutual-inductance, \(\beta = \beta_M \), sum of overlapping lengths \(\bar{x} \) & \(\bar{y} \)

Constant self-inductance

\[\beta_R = \beta_S = \beta_{SG} \]

Torque

\[T = i_a i_b \frac{d M_{ab}}{d\theta} + i_b i_c \frac{d M_{bc}}{d\theta} + i_c i_a \frac{d M_{ca}}{d\theta} \]

MCSRM inductance profiles

Design parameters are optimized targeting 3rd generation IPMSM (Toyota Prius 2010)

Parameter Sensitivity Analysis

Number of Turns (N_{Turn})

- FEA-Simulink Coupled simulations
- Parameter selection from machine model
- Optimization considers both T_{Base} & T_{Max}

Stator Back-iron Length (LSI)

- Low LSI, saturation at low excitation (NI)
- High LSI, A_{Slot} reduces (low NI), low R_g
- More effect on T_{Base} than T_{Max}

Effect of N_{Turn} variation

- Inductance depends heavily on N_{turn}
- Optimized under a given current density
- Higher N_{turn}, T_{Base} gains but CPSR reduces
- Impacts both T_{Base} and T_{Max} significantly
MCSRM Performance Evaluation

- 3D FEA analysis to include axial leakage flux effect
- Performance evaluated at ω_{Base}, $3 \times \omega_{\text{Base}}$ and ω_{Max}
- Designed MCSRM meets $T - \omega$ requirement

Optimal parameter values from iterative design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of turns, N_{turn}</td>
<td>18</td>
</tr>
<tr>
<td>Length of stator back-iron, LSI (mm)</td>
<td>18.5</td>
</tr>
<tr>
<td>Length of stator pole, LSP (mm)</td>
<td>11.5</td>
</tr>
<tr>
<td>Stator pole tapering angle, T_{pr_s} ($^{\circ}$)</td>
<td>6</td>
</tr>
<tr>
<td>Rotor pole tapering angle, T_{pr_r} ($^{\circ}$)</td>
<td>10.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>IPMSM</th>
<th>CSRM</th>
<th>MCSRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{den} (Nm/L)</td>
<td>35</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>P_{den} (kW/L)</td>
<td>10.2</td>
<td>10.4</td>
<td>9.57</td>
</tr>
<tr>
<td>T/W (Nm/kg)</td>
<td>9.3</td>
<td>8.4</td>
<td>8.45</td>
</tr>
<tr>
<td>P/W (kW/kg)</td>
<td>2.7</td>
<td>2.4</td>
<td>2.45</td>
</tr>
</tbody>
</table>

Performance comparison at ω_{Base}

Segmented Rotor SRM (SSRM)

MCSRM Challenges & Alternative

- MCSRM: Large end-winding, High l_{ew-ax}, less compact
- P_{R-St} (†), low slot fill factor, High torque ripple
- SSRM is the concentrated wound alternative
- Shorter end-winding, compact, high slot fill factor
- Bipolar operation, utilizes 3-phase standard VSI

Principle of Operation

- Rectilinear SSRM representation is utilized
- Excited phase fluxes in the same radial direction
- Aligned flux carried through adjacent stator poles
- Unaligned condition (b) single rotor segment shorting opposing fluxes of excited stator poles
Parameter Sensitivity Analysis

Initial Performance Evaluation

- Analyzed under same $J_{SLOT}(A/mm^2)$ and I_{RMS}
- Parameters were optimized for $\text{max}(T_{AVG})$

- Higher T_{Den} and T/W than CSRM
- High T_{Ripple} with SSRM, addressed next

SSRM Torque Ripple Minimization

SSRM Semi-numerical Model

- EM Torque from $\lambda - i - \theta$ (FEA) characteristic
- Adjacent stator pole carries aligned flux, δM_{xy} & δL_{xx}
- Linear magnetic circuit (direct M, L & T relations)

SSRM Torque Ripple Sources

- Calculated torque correlates well with that from FEA
- Major torque ripple region: ‘Region 1’ (I_{exc}: $+A, -C$)
- Unsmooth L_{xx} between ‘b’ & ‘d’ introduce large T_{Ripple}

\[
T_{EM} = \frac{1}{2} \left(i_A^2 \frac{dL_{AA}}{d\theta} + i_B^2 \frac{dL_{BB}}{d\theta} + i_C^2 \frac{dL_{CC}}{d\theta} \right) \\
+ i_A i_B \frac{dM_{AB}}{d\theta} + i_B i_C \frac{dM_{BC}}{d\theta} + i_C i_A \frac{dM_{CA}}{d\theta}
\]
Design of Rotor Segments

- Largest torque pulsation (‘b’ to ‘d’) occurs when rotor segment center crosses stator inter-polar gap
- Center of rotor segment is selected as design region
- Design 2 introduces segmental dip
- Smoothens self-inductance between ‘b’ & ‘d’
- Reduces inductance rate of change
- Parametric analysis required to optimize design
SSRM Design Optimization

Multi-dimensional, Multi-objective Optimization (M-Opt)

- Parameters optimized from ‘1F-Opt’ method are used for the initial design
- Rotor segmental dip is introduced for minimizing T_{RIPPLE}
- FEA tools FLUX 2D is coupled with Optimization tool GOT-It for ‘M-Opt’

Optimization Problem

Max(T_{AVG})
Min(T_{Ripple})
Such as:
$J_{SLOT} \leq 4.5 \text{ A/mm}^2$
$D_{Stator} \leq 163.5 \text{ mm}$
$D_{Axial} \leq 151.2 \text{ mm}$

Parameterized rotor and stator segments

- Transient FEA analysis over an electrical cycle used for evaluation
- Genetic Algorithm (GA) is selected with population size of 200 and 600 max. generation
- T_{AVG} (Nm), T_{RIPPLE} (%) and J_{SLOT} (A/mm2) results taken as decision variables
Performance Evaluation

Compared to initial design,

- ‘1F-Opt’ reduce T_{RIPPLE} by 24.09% with 6.6% T_{AVG} reduction
- ‘M-Opt’ reduce T_{RIPPLE} by 28.97% with similar T_{AVG}

SSRM Prototype Development

Mechanical Stress Analysis

- Stress = Force/Area
- Two types of forces need to consider
 - Radial forces (electromagnetics)
 - Centrifugal forces (mechanics)
- ANSYS workbench is utilized
 - Maxwell 2D for electromagnetic analysis
 - Static Structural is coupled in workbench
 - Radial force imported from EM analysis

Stress Analysis Results

Deformation Analysis Results

- Material yield strength = 300 Mpa
- Maximum von Mises stress = 7.4 Mpa
- Air-gap length = 0.4 mm
- Maximum deformation = 0.223 μm
- Prototype SSRM is under construction at FREEDM Lab

Photos of prototype SSRM
(left) stator & (right) rotor stack
Presentation Outline

NRE Electric Machines for EV/ HEVs
- Fully-pitched MCSRM with standard VSI
- Concentrated Wound Segmented Rotor SRM (SSRM)
- Accomplishments and Next Steps

High Performance Reluctance Drives with standard VSIs
- Multilayer (ML) AC Winding for Efficiency Improvement
- Application of ML Winding for SynRM Design
- Accomplishments and Next Steps

Technology Trends and Research Directions
- Cost-effective Efficiency & Performance improvement
- High P_{Den}, High Speed Motors with WBG Drives
- Integrated Motors for Industrial Automation
High Performance Machines for Industrial Drives

Industrial Market and Technology Trend

- Electric motors utilize 70% industrial & 28% global energy
- Efficiency (η) improvement: saves energy and environment
- Premium/IE3 efficiency motors: mandatory in US since 2011
- IEC and NEMA have defined supreme efficiency standards

High η Motors: Challenges & Opportunities

- Squirrel cage induction motor (SCIM): largest market share
- IE4 SCIM ($_{\text{rated}} \geq 7.5 \text{ kW}$), IE4 PMSM ($_{\text{rated}} \leq 7.5 \text{ kW}$)
- Low cost IE4 alternative is absent ($_{\text{rated}} \leq 7.5 \text{ kW}$)
- Stator joule loss dominates (45-55%) the selected power range

Machine Winding Technologies

Conventional Distributed Windings

- Coil spanned over pole pitch (fully pitched), or chorded
- High winding factor, sinusoidal MMF, low induced losses
- Large end-winding, high stator joule loss, low slot fill factor

Concentrated Winding

- Shorter end-turns, higher slot fill factor, more compact
- High stator MMF harmonics $P_{\text{Core}} \uparrow, T_{\text{AVG}} \downarrow, P_{\text{FIN}} \downarrow, T_{\text{Ripple}} \uparrow$
- Lower stator I^2R losses but higher induced losses, $\eta \downarrow$

Proposed Multilayer AC Winding

- $N_{\text{Layer}} = \Phi_{M/C}$, provides additional design domain
- Sample stator MMF in each slot reduced MMF harmonics
- Concentrically built winding, reduced end-winding length
Multilayer (ML) AC Winding

Winding Function Analysis

- Sinusoidal MMF with distributed coils and short-pitching
- Distribution factor \(k_{dv} \) accounts multiple-slots/coil-group
- Pitch factor \(k_{pv} \) considers less than pole-pitch coils
- Winding factor \(k_{wv} = k_{dv} \times k_{pv} \), controls \(|\text{stator MMF}| (F^v_{st})\)

\[
k_{dv} = \frac{\sin \left(\frac{\sqrt{2} \pi}{6} \right)}{q \sin \left(\frac{\sqrt{2} \pi}{6q} \right)} \quad k_{pv} = \sin \left(\frac{\sqrt{2} \pi}{2} \right) \quad F^v_{st} = \frac{3}{p} \cdot k_{wv} \cdot i_s
\]

Harmonic Characteristics

- MMFs from all coils of a group: in phase making \(k_{dv,ML} = 1 \)
- \(N_{Turn} \) weighted average defines \(k_{pv,ML} \), determines \(F^v_{st} \)
- Analytical stator MMF model is verified against FEA

\[
k_{pv} = \frac{1}{N_t} \sum_i N_i \cdot \sin \left(\sqrt{2} i - 1 \cdot \frac{\pi}{2} \right)
\]
Application of ML Winding: Induction Motor

Design Benchmark Selection

- 3-phase, 1 hp, NEMA Premium efficiency (IEC IE3) SCIM
- Highest efficiency available for SCIM ($P_{\text{Rated}} \leq 7.5 \text{ kW}$)
- 36 slot stator with double layer distributed winding (DLDW)
- Same iron core geometry for direct comparison

Specifications of Benchmark SCIM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{STATOR}</td>
<td>163.5 mm</td>
<td>V_{supply}</td>
<td>460 V</td>
</tr>
<tr>
<td>L_{STK}</td>
<td>80 mm</td>
<td>I_{PEAK}</td>
<td>2.0 A</td>
</tr>
<tr>
<td>N_{POLE}</td>
<td>4</td>
<td>P_{RATED}</td>
<td>746 W</td>
</tr>
<tr>
<td>f</td>
<td>60 Hz</td>
<td>Cooling</td>
<td>TENV</td>
</tr>
</tbody>
</table>

Design of ML Winding

- Slot conductor contributes to torque, end-winding doesn’t
- Benchmark motor parameters, defined by straight lines
- Different N_{Turn} combinations are evaluated for ML winding
- Objective: improving F_1, minimizing l_{ew} with R_{ew} constraint

Experimental Analysis

- IEEE 112 Standard Test procedure being followed
- Loss separation: motor no-load and loaded test
- Rated performance comparison for both machines

Results

- Significant (17.6%) reduction in stator I^2R loss
- Induced losses: lower α_{CORE} & rotor I^2R loss
- Total loss reduction 9%, Reaches η_{IE4} ($\leq 87.5\%$)

Developed 5 hp dyno test-bed at FREEDM Lab (high bay)

Patent application is in progress with the Office of Technology Transfer (OTT) at NCSU

RATED PERFORMANCE COMPARISON

<table>
<thead>
<tr>
<th>Winding Type</th>
<th>DLDW</th>
<th>MLW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω (rpm)</td>
<td>1748</td>
<td>1750</td>
</tr>
<tr>
<td>P_{I^2R-St} (W)</td>
<td>55.77</td>
<td>45.98</td>
</tr>
<tr>
<td>P_{Loss} (W)</td>
<td>109.07</td>
<td>99.59</td>
</tr>
<tr>
<td>T_{AVG} (Nm)</td>
<td>3.97</td>
<td>3.97</td>
</tr>
<tr>
<td>η (%)</td>
<td>86.95</td>
<td>87.96</td>
</tr>
<tr>
<td>PF_{IN} (pu)</td>
<td>0.78</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Next: ML-SynRM design (no rotor I^2R loss), 3% efficiency gain (η_{IE5}) targeted
Design of SynRM with ML Winding

Design Optimization

- Stator winding: Same as ML induction motor
- Stator $n_s = 18$, rotor $n_r = n_s \pm 4$, $n_r = 14$ selected
- Optimization: rotor geometry along with γ
- FEA tool Flux-2D coupled with Opt. tool GOT-It

Optimization Problem

$$\max(\eta)|_{\omega = \omega_{Rated}} = f(D_x, \theta_{xi}, \theta_{tx}, \theta_{bx}, W_{mx}, W_{tx}, t_x, \gamma)|_{x=1,2,3}$$

Torque ripple, C_{Rip} : $T_{Ripple} \leq 5\%$ (ceiling constraint)
Power factor, C_{PF} : $PF_{IN} \geq 0.7$ (floor constraint)

ML-SynRM Prototype Development

Effect of Rotor Skewing

- Skewing helps AC machines with distributed windings to reduce T_{Ripple} but T_{AVG} also reduces
- $\min(T_{Ripple})$ at $\theta_{Skew} = \theta_{Slot}$ with 4% T_{AVG} reduction
- Selected $\theta_{Skew} = 4^\circ$, $T_{Ripple} = 4.83\%$ with similar T_{AVG}

Mechanical Stress Analysis

- Multiphysics stress analysis, rated & extreme conditions
- Centrifugal force dominates these sinusoidal machines
- Stress & deformation found well below design limits
- Prototype ML-SynRM is built for experimental analysis

ML-SynRM deformation (2.5×10^4 times scaled)

Rotor skewing results of the designed ML-SynRM

Stress and deformation analysis

Prototype ML-SynRM rotor
ML-SynRM Experimental Analysis

- Prototype ML-SynRM is tested & compared against SCIM
- ML-SynRM has lower stator I^2R and P_{Core}
- Rotor I^2R loss is absent in ML-SynRM, significant η gain
- Total loss reduction by 25.65% at rated condition
- Performance evaluated under different loading condition
- Reached IE5 class efficiency under TENV cooling

Comparison of ML-SynRM test results against benchmark SCIM

<table>
<thead>
<tr>
<th>Machine Type</th>
<th>SCIM</th>
<th>ML-SynRM</th>
<th>Machine Type</th>
<th>SCIM</th>
<th>ML-SynRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{Core} (W/V2)</td>
<td>5.3e-4</td>
<td>3.7e-4</td>
<td>P_{FW} (W)</td>
<td>7.2</td>
<td>7.3</td>
</tr>
<tr>
<td>ω_{Rated} (rpm)</td>
<td>1748</td>
<td>1800</td>
<td>P_{Loss} (W)</td>
<td>109.07</td>
<td>81.09</td>
</tr>
<tr>
<td>P_{I^2R-St} (W)</td>
<td>55.8</td>
<td>52.2</td>
<td>T_{AVG} (Nm)</td>
<td>3.97</td>
<td>3.97</td>
</tr>
<tr>
<td>P_{I^2R-Rt} (W)</td>
<td>23.57</td>
<td>-</td>
<td>η (%)</td>
<td>86.95</td>
<td>90.22</td>
</tr>
<tr>
<td>P_{Core} (W)</td>
<td>22.53</td>
<td>21.59</td>
<td>P_{FIN} (pu)</td>
<td>0.78</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Presentation Outline

NRE Electric Machines for EV/ HEVs
- Fully-pitched MCSRM with standard VSI
- Concentrated Wound Segmented Rotor SRM (SSRM)
- Accomplishments and Next Steps

High Performance Reluctance Drives with standard VSIs
- Multilayer (ML) AC Winding for Efficiency Improvement
- Application of ML Winding for SynRM Design
- Accomplishments and Next Steps

Technology Trends and Research Directions
- Cost-effective Efficiency & Performance improvement
- High \(P_{Den} \), High Speed Motors with WBG Drives
- Integrated Motors for Industrial Automation
Technology Trends in Electric Machine Design

Key Objectives & Research Initiatives

- Cost-effective \(\eta \) Improvement
- Power & Energy Young Professionals
- \(P_{\text{Den}} \uparrow, \omega \uparrow \) WBG Drives
- Industrial Internet of Things (IIoT)
- Beyond conventional materials
Technology Trends in Electric Machine Design

- Cost-effective η Improvement
- Power & Energy Young Professionals
- Industrial Internet of Things (IIoT)
- Beyond conventional materials
- \(P_{\text{Den}} \uparrow, \omega \uparrow \)
- WBG Drives
Technology Trends in Electric Machine Design

1. **Cost-effective \(\eta \) Improvement**
2. **Power & Energy Young Professionals**
3. **Industrial Internet of Things (IIoT)**
4. **Beyond conventional materials**
5. **\(P_{Den} \uparrow, \omega \uparrow \)**
6. **WBG Drives**
Technology Trends in Electric Machine Design

- Cost-effective improvements
- Power & Energy Young Professionals
- Industrial Internet of Things (IIoT)
- Beyond conventional materials
- P_{Den} (\uparrow), ω (\uparrow) WBG Drives
Technology Trends in Electric Machine Design

- Cost-effective
- η Improvement
- Power & Energy Young Professionals
- Industrial Internet of Things (IIoT)
- P_{Den} (↑), ω (↑) WBG Drives
- Beyond conventional materials
Technology Trends in Electric Machine Design

- Cost-effective η Improvement
- Power & Energy Young Professionals
- Industrial Internet of Things (IIoT)
- Beyond conventional materials
- P_{Den} (↑), ω (↑) WBG Drives

- Young Professionals
Low-cost, Ultra-premium Efficiency Industrial Machines

Background & Motivation
- Designed ML-SynRM achieves IE5 efficiency with TENV cooling
- Power factor lower than IM, increases drive rating
- Higher power level, stator I^2R loss(%) ↓ & induced loss(%) ↑
- PMA-ML-SynRM will be an IE5 alternative with high pf (≥ 0.85)

Challenges & Opportunities
- T_{Ripple} minimization without skewing (asymmetric pole, δ_{q-lam})
- De-magnetization under heavy loading ($H_{c,Ferrite} \approx \frac{1}{3}H_{c,NRE}$)
- Loss based rotor and stator (modular) material selection
- Design rules establishment for performance improvement

Relevant Experience
- PhD research on ML-SynRM
- Design optimization, prototype development, control
- Internship experience on PMA-SynRM (machine prototyping)
High Performance Traction Motors with WBG Drives

Background & Motivation

- Reliability, fault tolerance, lower cost, and lower emission
- High T_{den}, high T/W, low inertia, wide CPSR, high temperature
- High efficiencies, minimal T_{Ripple}, low noise and vibration
- Facilitate plug-&-play on-board fast battery charging system

Research Opportunities

- Designs: SRM, PMA-SynRM, FSPM with ML/FSCW & NRE PM
- Multi-phase machine & converter: control flexibility, improved fault tolerance, higher power with limited rated devices, charging
- WBG: higher f_{sw}, sinusoidal current, smaller filters, capacitors

Relevant Experience & Exposures

- PhD research: EV/HEV machine design, SynRM, FSPM
- NCSU: 55 kW (peak), 650 V SiC based traction drive
- NCSU: Machine design inputs for 100 kW SiC based drive

Prototype Motors
- (a) 12/8 SRM3
- (b) FSPM stator4
- (c) 12/10 PMA-SynRM5

for traction application

650V, 55kW SiC traction drive6

3 Tokyo Institute of Tech., Japan; 4 Southeast University, Nanjing, China; 5 Univ. of Padova, Italy; 6 NCSU PowerAmerica
Ultra-high Speed, High P_{Den} Motors with WBG Drives

Background & Motivation

- WBG devices enable high frequency, high temperature operations
- Electric machines with high f_{Fund} for high speed possible
- Enables non-conventional designs (weight advantage)
- Potential application: UAV, medical instrument, traction

Challenges & Opportunities

- Topologies: Slot-less, core-less, axial-flux, transverse-flux
- Immature technology compared to radial flux counterparts
- Non-conventional core materials for the cores: SMC, AMM
- Non-conv. conductor materials: CNT, pre-compressed Al

Relevant Experience & Exposures

- Segmented rotor AF-FSPM (ECCE 2015)
- NCSU: TFM research with claw-pole & SMCs
- NCSU: Slot-less machines for high speed applications

7 www.thingap.com; 8 Univ. of Kentucky; 9 NC State Univ.
Integrated Motor Drives (IMDs)

Background & Motivation

• Compact motor drives & built in electronics (no drive cabinet, cables)
• Expected 40% market growth by 2017 (source: NYSE IHS)
• Revolutionize manufacturing, energy efficient, compact technologies
• Potential application: servo, direct drive, industrial drives

Challenges & Opportunities

• Compact system, EM, electronic and mechanical constraints
• Application specific, non-explosion-proof, sensor-less control
• Opens up multidisciplinary research opportunities
• Modular design improves reliability, adds controller complexity

Relevant Experience & Exposures

• ABB USCRC internship on integrated motor drives
• PCB designing, rapid prototyping, transient & loaded testing
• Position sensor-less control at low and high-speeds

10 Univ. of Wisconsin Madison; 11 proteanelectric.com
Open-source Design Tools for Electric Machines

Background & Motivation

- 40% of workforce at US utilities will be eligible for retirement in next 5 years
- The power sector will need 100,000 new skilled workers by the year 2018
- It is essential to develop skilled young professionals in power & energy
- Attract young talents to power engineering areas

Objectives and Impacts

- Electric machine design tool using FEA & optimization algorithms
- Use open-source software FEMM & GNU Octave
- Help students in gaining exposures in EM design engineering
- Provide timely and accurate design solutions to engineers

Relevant Experience & Exposures

- Initial objective: develop tools for induction motor design
- ABB Internship: research on IM 3D parameters’ model
- Dr. Boglietti’s works on geometry based IM modeling

Concluding Thoughts

Motor Drive Systems

- Machine Design
- Power Electronics
- Motor Control

- Electromagnetic
- Mechanical
- Materials
- Optimization
- Compatibility
- Integration
- Configuration
- Devices
- Strategies
- Algorithms
- Real time DSP
- Sensors
Thank you

“To find the secrets of the universe, think in terms of energy, frequency and vibration”

Nikola Tesla (1856-1943)