Research & Technology Trends in Electric Machine Design for Operation with Variable Speed Drives

Md Ashfanoor Kabir PhD Candidate Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC, USA

Presentation Outline

NRE Electric Machines for EV/ HEVs

- Fully-pitched MCSRM with standard VSI
- Concentrated Wound Segmented Rotor SRM (SSRM)
- Accomplishments and Next Steps

High Performance Reluctance Drives with standard VSIs

- Multilayer (ML) AC Winding for Efficiency Improvement
- Application of ML Winding for SynRM Design
- Accomplishments and Next Steps

Technology Trends and Research Directions

- Cost-effective Efficiency & Performance improvement
- High *P*_{Den}, High Speed Motors with WBG Drives
- Integrated Motors for Industrial Automation

NRE Electric Machines for EV/ HEVs

EV/HEV Growth and Trends

- Plug-in vehicles growth is 20 times faster than others
- Traction motor demand (high *T*_{Den}, *P*_{Den}, η) : proportional
- · IPMSM most popular candidate with rare-earth (RE) PMs
- RE materials' price & supply: HEV mass production issues

Global plugin vehicles sales data (source: ev-volumes.com)

Traction Motor Challenges & Opportunities

- · China mines 80% of the world's rare-earth materials
- China 2016 PEV sales growth: +85% compared to 2015
- RE price hike in July 2015 as Chine boosts RE reserve¹
- · Research on NRE alternatives are essential

RE price vs gold & silver (source: Thomson Reuters)

NRE Electric Machines for EV/ HEVs

SRM for Traction Application

- Robust rotor, high speed, high temp., wide CPSR
- Unipolar operation, unconventional converter
- High torque ripple and acoustic noise

Research Objective

- Design of SRM using 3-phase standard VSI for EV/HEVs
- High T_{Den} and wide CPSR: competitive traction specifications
- Mutually Coupled SRM (MCSRM) with fully pitched winding
- · Bipolar/ sinusoidal operation, 3-phase standard VSI

MCSRM for Traction Application

- EM torque, $T_a = \frac{1}{2} \left(i_a^2 \frac{dL_{aa}}{d\theta} + i_a i_b \frac{dM_{ab}}{d\theta} + i_c i_a \frac{dM_{ca}}{d\theta} \right)$
- Phase back EMF, $E_a = \left(\frac{dL_{aa}}{d\theta}, i_a + \frac{dM_{ab}}{d\theta}, i_b + \frac{dM_{ca}}{d\theta}, i_c\right)\omega$
- Optimization required at both ω_{Base} & ω_{Max}

Typical SRM Converter

3φ Standard VSI

(left) Conventional SRM and (right) MCSRM

Design of MCSRM for Traction Application

Analytical air-gap flux and inductance are derived from winding spatial distribution and pole shapes

M. A. Kabir and I. Husain, "Mutually coupled switched reluctance machine (MCSRM) for electric and hybrid vehicles," *2014 IEEE PES General Meeting* | *Conference & Exposition*, National Harbor, MD, 2014, pp. 1-5.

Self-inductance, $\beta = \beta_L$, sum of overlapping length *x* & *y*

Mutual-inductance, $\beta = \beta_M$, sum of overlapping lengths $\vec{x} \& \vec{y}$

Constant self-inductance

 $\boldsymbol{\beta}_R = \boldsymbol{\beta}_S = \boldsymbol{\beta}_{SG}$

Torque
$$T = i_a i_b \frac{dM_{ab}}{d\theta} + i_b i_c \frac{dM_{bc}}{d\theta} + i_c i_a \frac{dM_{ca}}{d\theta}$$

Design parameters are optimized targeting 3rd generation IPMSM (Toyota Prius 2010)

Parameter Sensitivity Analysis

Number of Turns (N_{Turn})

- FEA-Simulink Coupled simulations
- · Parameter selection from machine model
- Optimization considers both T_{Base} & T_{Max}

Effect of N_{Turn} variation

- Inductance depends heavily on N_{turn}
- · Optimized under a given current density
- Higher N_{turn}, T_{Base} gains but CPSR reduces
- Impacts both T_{Base} and T_{Max} significantly

Stator Back-iron Length (LSI)

- Low LSI, saturation at low excitation (NI)
- High LSI, A_{Slot} reduces (low NI), low R_g
- More effect on T_{Base} than T_{Max}

Back-iron

saturation

vs. LSI

MCSRM Performance Evaluation

- 3D FEA analysis to include axial leakage flux effect
- Performance evaluated at ω_{Base} , $3 * \omega_{Base}$ and ω_{Max}
- Designed MCSRM meets $T \omega$ requirement

MCSRM model in 3D FEA

Performance comparison at ω_{Base}

Parameters	IPMSM	CSRM	MCSRM
T _{den} (Nm/L)	35	36	33
P _{den} (kW/L)	10.2	10.4	9.57
T/W (Nm/kg)	9.3	8.4	8.45
P/W (kW/kg)	2.7	2.4	2.45

M. A. Kabir and I. Husain, "Design of Mutually Coupled Switched Reluctance Motors (MCSRMs) for Extended Speed Applications Using 3-Phase Standard Inverters," in *IEEE Transactions on Energy Conversion*, vol. 31, no. 2, pp. 436-445, June 2016.

Optimal parameter values from iterative design

Parameter	value
Number of turns, N _{turn}	18
Length of stator back-iron, LSI (mm)	18.5
Length of stator pole, LSP (mm)	11.5
Stator pole tapering angle, Tpr _s (°)	6
Rotor pole tapering angle, Tpr _r (°)	10.5

 $T - \omega$ Characteristics of designed MCSRM

Segmented Rotor SRM (SSRM)

MCSRM Challenges & Alternative

- MCSRM: Large end-winding, High l_{ew-ax} , less compact
- P_{I^2R-St} (1), low slot fill factor, High torque ripple
- · SSRM is the concentrated wound alternative
- · Shorter end-winding, compact, high slot fill factor
- Bipolar operation, utilizes 3-phase standard VSI

Proposed Segmented Rotor SRM (SSRM)

Principle of Operation

- Rectilinear SSRM representation is utilized
- Excited phase fluxes in the same radial direction
- Aligned flux carried through adjacent stator poles
- Unaligned condition (b) single rotor segment shorting opposing fluxes of excited stator poles

Parameter Sensitivity Analysis

- Analyzed under same J_{SLOT} (A/mm²) and I_{RMS}
- Parameters were optimized for $max(T_{AVG})$

M. A. Kabir and I. Husain, "Concentrated winding segmented rotor switched reluctance machine (SRM) using three-phase standard inverters," *2015 IEEE Energy Conversion Congress and Exposition (ECCE)*, Montreal, QC, 2015, pp. 5567-5572.

Initial Performance Evaluation

Parameter	SSRM	CSRM
T _{AVG} (Nm)	9.30	8.34
P _{OUT} (W)	973.89	877.55
W (kg)	4.41	4.76
I _{RMS} (A)	4.25	3.88
T _{DEN} (Nm/L)	9.69	8.73
T/W (Nm/kg)	2.11	1.76

- Higher T_{Den} and T/W than CSRM
- High T_{Ripple} with SSRM, addressed next

SSRM Torque Ripple Minimization

SSRM Semi-numerical Model

- EM Torque from $\lambda i \theta$ (FEA) characteristic
- Adjacent stator pole carries aligned flux, $\delta M_{xy} \& \delta L_{xx}$
- Linear magnetic circuit (direct *M*, *L* & *T* relations)

$$T_{EM} = \frac{1}{2} \left(i_A^2 \frac{dL_{AA}}{d\theta} + i_B^2 \frac{dL_{BB}}{d\theta} + i_C^2 \frac{dL_{CC}}{d\theta} \right) + i_A i_B \frac{dM_{AB}}{d\theta} + i_B i_C \frac{dM_{BC}}{d\theta} + i_C i_A \frac{dM_{CA}}{d\theta}$$

SSRM Torque Ripple Sources

- Calculated torque correlates well with that from FEA
- Major torque ripple region : 'Region 1' (I_{Excs} : +A, -C)
- Unsmooth L_{xx} between 'b' & 'd' introduce large T_{Ripple}

Calculated and FEA based EM Torque

Design of Rotor Segments

- Largest torque pulsation ('b' to 'd') occurs when rotor segment center crosses stator inter-polar gap
- · Center of rotor segment is selected as design region
- Design 2 introduces segmental dip
- Smoothens self-inductance between 'b' & 'd'
- · Reduces inductance rate of change
- Parametric analysis required to optimize design

Comparison of inductance profiles

Initial and considered rotor segment designs

SSRM Design Optimization

Multi-dimensional, Multi-objective Optimization (M-Opt)

- Parameters optimized from '1F-Opt' method are used for the initial design
- Rotor segmental dip is introduced for minimizing *T_{RIPLLE}*
- FEA tools FLUX 2D is coupled with Optimization tool GOT-It for 'M-Opt'

Optimization Problem

 $\begin{array}{l} {\rm Max}(T_{AVG})\\ {\rm Min}(T_{Ripple})\\ {\rm Such \ as};\\ J_{SLOT} \leq 4.5 \ {\rm A/mm^2}\\ D_{Stator} \leq 163.5 \ {\rm mm}\\ D_{Axial} \leq 151.2 \ {\rm mm} \end{array}$

Parameterized rotor and stator segments

- Transient FEA analysis over an electrical cycle used for evaluation
- Genetic Algorithm (GA) is selected with population size of 200 and 600 max. generation
- T_{AVG} (Nm), T_{RIPPLE} (%) and J_{SLOT} (A/mm²) results taken as decision variables

Performance Evaluation

Compared to initial design,

- '1F-Opt' reduce T_{RIPPLE} by 24.09% with 6.6% T_{AVG} reduction
- 'M-Opt' reduce T_{RIPPLE} by 28.97% with similar T_{AVG}

M. A. Kabir and I. Husain, "Segmented rotor design of concentrated wound switched reluctance motor (SRM) for torque ripple minimization," *2016 IEEE Energy Conversion Congress and Exposition (ECCE)*, Milwaukee, WI, 2016, pp. 1-6.

Rated performance comparison under the same stator I^2R loss

Parameter	Initial	1F-Opt	M-Opt
Arc _{DIP} (°)	10	90	36.5
β _{SEG} (°)	38	36	40.95
β _{SEGB} (°)	38	40	36.47
β _{DIP} (°)	4	7.0	6.02
H _{SEG} (mm)	24.3	21.2	19.4
<i>H_{DIP}</i> (mm)	1	3.5	2.81
<i>R</i> ₁ (mm)	0.5	0.1	0.78
<i>R</i> ₂ (mm)	0.5	0.1	2.26
<i>R</i> ₃ (mm)	0.5	0.1	1.37
<i>T_{AVG}</i> (Nm)	4.68	4.37	4.6
T _{RIPPLE} (Nm)	1.68	0.52	0.32
<i>T_{RIPPLE}</i> (%)	35.92	11.83	6.95

SSRM Prototype Development

Mechanical Stress Analysis

- Stress = Force/Area
- · Two types of forces need to consider
 - Radial forces (electromagnetics)
 - Centrifugal forces (mechanics)
- ANSYS workbench is utilized
 - · Maxwell 2D for electromagnetic analysis
 - Static Structural is coupled in workbench
 - Radial force imported from EM analysis

Stress Analysis Results

Deformation Analysis Results

- Material yield strength = 300 Mpa
- Maximum von Mises stress = 7.4 Mpa
- Air-gap length = 0.4 mm
- Maximum deformation = 0.223 μm
- Prototype SSRM is under construction at FREEDM Lab

Phots of prototype SSRM (left) stator & (right) rotor stack

Presentation Outline

NRE Electric Machines for EV/ HEVs

- Fully-pitched MCSRM with standard VSI
- Concentrated Wound Segmented Rotor SRM (SSRM)
- Accomplishments and Next Steps

High Performance Reluctance Drives with standard VSIs

- Multilayer (ML) AC Winding for Efficiency Improvement
- Application of ML Winding for SynRM Design
- Accomplishments and Next Steps

Technology Trends and Research Directions

- Cost-effective Efficiency & Performance improvement
- High *P*_{Den}, High Speed Motors with WBG Drives
- Integrated Motors for Industrial Automation

High Performance Machines for Industrial Drives

Industrial Market and Technology Trend

- Electric motors utilizes 70% industrial & 28% global energy
- Efficiency (η) improvement: saves energy and environment
- · Premium/IE3 efficiency motors: mandatory in US since 2011
- · IEC and NEMA have defined supreme efficiency standards

AC motors market share by type and size ²

High η Motors: Challenges & Opportunities

- Squirrel cage induction motor (SCIM): largest market share
- IE4 SCIM ($P_{rated} \ge 7.5 \text{ kW}$), IE4 PMSM ($P_{rated} \le 7.5 \text{ kW}$)
- Low cost IE4 alternative is absent ($P_{rated} \le 7.5 \text{ kW}$)
- Stator joule loss dominates (45-55%) the selected power range

² De Almeida, A.T.; Ferreira, F.J.T.E.; Ge Baoming, "Beyond Induction Motors—Technology Trends to Move Up Efficiency," *IEEE Transactions on Industry Applications*, vol.50, no.3, pp.2103-2114, May-June 2014

Machine Winding Technologies

Conventional Distributed Windings

- · Coil spanned over pole pitch (fully pitched), or chorded
- High winding factor, sinusoidal MMF, low induced losses
- Large end-winding, high stator joule loss, low slot fill factor

Concentrated Winding

- Shorter end-turns, higher slot fill factor, more compact
- High stator MMF harmonics $P_{Core} \uparrow, T_{AVG} \downarrow, PF_{IN} \downarrow, T_{Ripple} \uparrow$
- Lower stator I^2R losses but higher induced losses, $\eta \downarrow$

Proposed Multilayer AC Winding

- $N_{Layer} = \phi_{M/C}$, provides additional design domain
- Sample stator MMF in each slot reduced MMF harmonics
- Concentrically built winding, reduced end-winding length

(left) Distributed and (right) concentrated winding

Concentrated wound stator MMF spectrum

Multilayer (ML) AC Winding

Winding Function Analysis

- · Sinusoidal MMF with distributed coils and short-pitching
- Distribution factor (k_{dv}) accounts multiple-slots/coil-group
- Pitch factor (k_{py}) considers less than pole-pitch coils
- Winding factor $k_{wv} = k_{dv} \times k_{pv}$, controls |stator MMF| (F_{st}^{v})

Harmonic Characteristics

- MMFs from all coils of a group: in phase making $k_{dv_ML} = 1$
- N_{Turn} weighted average defines $k_{p\nu_{ML}}$, determines F_{st}^{ν}
- Analytical stator MMF model is verified against FEA

$$k_{p\nu} = \frac{1}{N_{t}} \sum_{i} N_{i} \cdot \sin\left(\nu \cdot \frac{2i-1}{\tau_{p}} \cdot \frac{\pi}{2}\right)$$

Application of ML Winding: Induction Motor

Design Benchmark Selection

- 3-phase, 1 hp, NEMA Premium efficiency (IEC IE3) SCIM
- Highest efficiency available for SCIM ($P_{Rated} \leq 7.5 \ kW$)
- 36 slot stator with double layer distributed winding (DLDW)
- Same iron core geometry for direct comparison

Specifications of Benchmark SCIM

Value Parameter Parameter Value 460 V 163.5 mm V_{supply} D_{STATOR} 80 mm 2.0 A L_{STK} PEAK 746 W N_{POLE} 4 PRATED 60 Hz Cooling TENV

Prototype stator lamination

2016

IEEE PES

GN

Design of ML Winding

- Slot conductor contributes to torque, end-winding doesn't
- Benchmark motor parameters, defined by straight lines
- Different N_{Turn} combinations are evaluated for ML winding
- Objective: improving F_1 , minimizing l_{ew} with R_{ew} constraint

M. A. Kabir and I. Husain, "New Multilayer Winding Configuration for Distributed MMF in AC Machines with Shorter End-turn Length," *2016 IEEE Power & Energy Society General Meeting*, Boston, MA, 2016, pp. 1-5.

Winding factor and MMF coefficient variation (v=1)

End-winding length and resistance variation

Prototype multilayer winding

Experimental Analysis

- IEEE 112 Standard Test procedure being followed
- · Loss separation: motor no-load and loaded test
- Rated performance comparison for both machines

Results

- Significant (17.6%) reduction in stator I²R loss
- Induced losses: **lower** α_{CORE} & rotor I^2R loss
- Total loss reduction 9%, Reaches η_{IE4} (\leq 87.5%)

Developed 5 hp dyno test-bed at FREEDM Lab (high bay)

Rated Performance Comparison

Winding Type	DLDW	MLW
ω (rpm)	1748	1750
P_{I^2R-St} (W)	55.77	45.98
P _{LOSS} (W)	109.07	99.59
T _{AVG} (Nm)	3.97	3.97
η (%)	86.95	87.96
<i>PF_{IN}</i> (pu)	0.78	0.78

Next: ML-SynRM design (no rotor I^2R loss), 3% efficiency gain (η_{IE5}) targeted

Design of SynRM with ML Winding

Design Optimization

- · Stator winding: Same as ML induction motor
- Stator n_s = 18, rotor n_r = $n_s \pm 4$, n_r = 14 selected
- Optimization: rotor geometry along with γ
- FEA tool Flux-2D coupled with Opt. tool GOT-It

Optimization Problem

$$\begin{split} \max(\eta)|_{\omega=\omega_{Rated}}^{95.0\%} &= f(D_x, \theta_{xi}, \theta_{tx}, \theta_{bx}, W_{mx}, W_{tx}, t_x, \gamma)|_{x=1,2,3}^{i=1,2} \\ \text{Torque ripple, } C_{Rip}: T_{Ripple} \leq 5\% \text{ (ceiling constraint)} \\ \text{Power factor, } C_{PF}: PF_{IN} \geq 0.7 \text{ (floor constraint)} \end{split}$$

Md Ashfanoor Kabir and Iqbal Husain, "Design of Synchronous Reluctance Motor with Multilayer AC Winding" IEEE International Electric Machines and Drive Conference (IEMDC), May 21-24, 2017

ML-SynRM Prototype Development

Effect of Rotor Skewing

- Skewing helps AC machines with distributed windings to reduce T_{Ripple} but T_{AVG} also reduces
- $Min(T_{Ripple})$ at $\theta_{Skew} = \theta_{Slot}$ with 4% T_{AVG} reduction
- Selected θ_{Skew} = 4°, T_{ripple} = 4.83% with similar T_{AVG}

Mechanical Stress Analysis

- Multiphysics stress analysis, rated & extreme conditions
- Centrifugal force dominates these sinusoidal machines
- · Stress & deformation found well below design limits
- Prototype ML-SynRM is built for experimental analysis

ML-SynRM deformation (2.5×10^4 times scaled)

Rotor skewing results of the designed ML-SynRM

Stress and deformation analysis

Prototype ML-SynRM rotor

ML-SynRM Experimental Analysis

- Prototype ML-SynRM is tested & compared against SCIM
- ML-SynRM has lower stator I²R and P_{core}
- Rotor I^2R loss is absent in ML-SynRM, significant η gain
- Total loss reduction by 25.65% at rated condition
- Performance evaluated under different loading condition
- Reached IE5 class efficiency under TENV cooling

Machine Type	SCIM	ML- SynRM	Machine Type	SCIM	ML- SynRM
α _{CORE} (W/V²)	5.3e ⁻⁴	3.7e ⁻⁴	<i>P</i> _{F,W} (W)	7.2	7.3
ω _{Rated} (rpm)	1748	1800	P_{LOSS} (W)	109.07	81.09
P _{I²R-St} (W)	55.8	52.2	T _{AVG} (Nm)	3.97	3.97
P _{I²R-Rt} (W)	23.57	-	η (%)	86.95	90.22
<i>P_{CORE}</i> (₩)	22.53	21.59	<i>PF_{IN}</i> (pu)	0.78	0.72

Comparison of ML-SynRM test results against benchmark SCIM

M. A. Kabir and I. Husain, "Application of Multilayer AC winding to Design Synchronous Reluctance Motors," in Special Section of *IEEE Transactions on Industrial Electronics*, (submitted)

Presentation Outline

NRE Electric Machines for EV/ HEVs

- Fully-pitched MCSRM with standard VSI
- Concentrated Wound Segmented Rotor SRM (SSRM)
- Accomplishments and Next Steps

High Performance Reluctance Drives with standard VSIs

- Multilayer (ML) AC Winding for Efficiency Improvement
- Application of ML Winding for SynRM Design
- Accomplishments and Next Steps

Technology Trends and Research Directions

- Cost-effective Efficiency & Performance improvement
- High *P*_{Den}, High Speed Motors with WBG Drives
- Integrated Motors for Industrial Automation

Technology Trends in Electric Machine Design

Key Objectives & Research Initiatives

Low-cost, Ultra-premium Efficiency Industrial Machines

Background & Motivation

- Designed ML-SynRM achieves IE5 efficiency with TENV cooling
- · Power factor lower than IM, increases drive rating
- Higher power level, stator I²R loss(%) ↓ & induced loss(%) ↑
- PMA-ML-SynRM will be an IE5 alternative with high pf (≥ 0.85)

Challenges & Opportunities

- T_{Ripple} minimization without skewing (asymmetric pole, δ_{q-lam})
- De-magnetization under heavy loading $(H_{c_Ferrite} \approx \frac{1}{3} H_{c_{NRE}})$
- · Loss based rotor and stator (modular) material selection
- · Design rules establishment for performance improvement

Relevant Experience

- PhD research on ML-SynRM
- · Design optimization, prototype development, control
- · Internship experience on PMA-SynRM (machine prototyping)

IM to PMA-SynRM Design Tradeoffs

Prototype (left) ML-SynRM & (right) PMA-SynRM rotors

High Performance Traction Motors with WBG Drives

Background & Motivation

- · Reliability, fault tolerance, lower cost, and lower emission
- High T_{den} , high T_W , low inertia, wide CPSR, high temperature
- High efficiencies, minimal *T_{Ripple}*, low noise and vibration
- Facilitate plug-&-play on-board fast battery charging system

Research Opportunities

- Designs: SRM, PMA-SynRM, FSPM with ML/FSCW & NRE PM
- Multi-phase machine & converter: control flexibility, improved fault tolerance, higher power with limited rated devices, charging
- WBG: higher f_{sw} , sinusoidal current, smaller filters, capacitors

Relevant Experience & Exposures

- PhD research: EV/HEV machine design, SynRM, FSPM
- NCSU: 55 kW (peak), 650 V SiC based traction drive
- NCSU: Machine design inputs for 100 kW SiC based drive

650V, 55kW SiC traction drive⁶

Ultra-high Speed, High *P*_{Den} Motors with WBG Drives

Background & Motivation

- WBG devices enables high frequency, high temperature operations
- Electric machines with high $f_{Fund.}$ for high speed possible
- Enables non-conventional designs (weight advantage)
- Potential application: UAV, medical instrument, traction

Challenges & Opportunities

- Topologies: Slot-less, core-less, axial-flux, transverse-flux
- · Immature technology compared to radial flux counterparts
- Non-conventional core materials for the cores: SMC, AMM
- Non-conv. conductor materials: CNT, pre-compressed AL

Relevant Experience & Exposures

- Segmented rotor AF-FSPM (ECCE 2015)
- NCSU: TFM research with claw-pole & SMCs
- NCSU: Slot-less machines for high speed applications

Slot-less machine 7

Pre-compressed Al

32 pole Transverse-flux Motor 9

Toroidal wound AF-FSM

Md Ashfanoor Kabir, Adeeb Ahmed and Iqbal Husain, "Axial flux segmental rotor flux-switching synchronous motor," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 2148-2152.

⁷ www.thingap.com; ⁸ Univ. of Kentucky; ⁹ NC State Univ.

Integrated Motor Drives (IMDs)

Background & Motivation

- Compact motor drives & built in electronics (no drive cabinet, cables)
- Expected 40% market growth by 2017 (source: NYSE IHS)
- Revolutionize manufacturing, energy efficient, compact technologies
- · Potential application: servo, direct drive, industrial drives

Challenges & Opportunities

- · Compact system, EM, electronic and mechanical constraints
- Application specific, non-explosion-proof, sensor-less control
- Opens up multidisciplinary research opportunities
- · Modular design improves reliability, adds controller complexity

Relevant Experience & Exposures

- · ABB USCRC internship on integrated motor drives
- PCB designing, rapid prototyping, transient & loaded testing
- · Position sensor-less control at low and high-speeds

Integrated modular motor drives (IMMD) 10

Protean 75 kW in-wheel electric motor 11

Open-source Design Tools for Electric Machines

Background & Motivation

- 40% of workforce at US utilities will be eligible for retirement in next 5 year
- The power sector will need 100,000 new skilled workers by the year 2018
- · It is essential to develop skilled young professionals in power & energy
- · Attract young talents to power engineering areas

Objectives and Impacts

- Electric machine design tool using FEA & optimization algorithms
- Use open-source software FEMM & GNU Octave
- · Help students in gaining exposures in EM design engineering
- · Provide timely and accurate design solutions to engineers

Relevant Experience & Exposures

- · Initial objective: develop tools for induction motor design
- ABB Internship: research on IM 3D parameters' model
- Dr. Boglietti's works on geometry based IM modeling

SyR-e : Synchronous Reluctance – evolution¹²

IM ring parameter estimation model

M. A. Kabir, R. Mikail, S. Englebretson and I. Husain, "3D FEA based squirrel cage rotor model for design tradeoffs and performance analysis," *2015 IEEE Applied Power Electronics Conference and Exposition (APEC)*, Charlotte, NC, 2015, pp. 2696-2702.

¹² sourceforge.net/projects/syr-e/

Concluding Thoughts

Thank you

"To find the secrets of the universe, think in terms of energy, frequency and vibration"

Nikola Tesla (1856-1943)