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Abstract—Efficient and reliable demand side management tech-
niques for community charging of plug-in hybrid electrical vehicles
(PHEVs) and plug-in electrical vehicles (PEVs) are needed, as large
numbers of these vehicles are being introduced to the power grid. To
avoid overloads and maximize customer preferences in terms of
time and cost of charging, a constrained nonlinear optimization
problem can be formulated. In this paper, we have developed a
novel cooperative distributed algorithm for charging control of
PHEVs/PEVs that solves the constrained nonlinear optimization
problem using Karush–Kuhn–Tucker (KKT) conditions and con-
sensus networks in a distributed fashion. In our design, the global
optimal power allocation under all local and global constraints is
reached through peer-to-peer coordination of charging stations.
Therefore, the need for a central control unit is eliminated. In this
way, single-node congestion is avoided when the size of the problem
is increased and the system gains robustness against single-link/
node failures. Furthermore, via Monte Carlo simulations, we have
demonstrated that the proposed distributed method is scalable with
the number of charging points and returns solutions, which are
comparable to centralized optimization algorithms with a maxi-
mum of 2% sub-optimality. Thus, the main advantages of our
approach are eliminating the need for a central energy manage-
ment/coordination unit, gaining robustness against single-link/node
failures, and being scalable in terms of single-node computations.

Index Terms—Consensus algorithms, decentralized control,
demand side management, Karush–Kuhn–Tucker (KKT)
conditions, plug-in electric vehicle (PEV), plug-in hybrid electric
vehicle (PHEV).

NOMENCLATURE

The priority weighting for the th vehicle at the

th time step.

State-of-charge (SoC) of the battery of the th

vehicle at the th time step.

Allocated power to the th vehicle at the th time

step.

The power bound for the th vehicle at the th

time step.

The optimal allocation of power to the th vehi-

cle at the th time step.

Maximum total available power for charging.

The equivalent capacitance of the th battery.

Voltage of the battery atmaximumcharged state.

Voltage of the battery at minimum charged state.

The capacity of the th battery.

Time step for charging.

Efficiency of the charging of the th battery.

The maximum desired SoC.

The initial SoC of the vehicle, when it connects

to the grid.

.

.

Cost function of the th vehicle.

Approximated cost function of the th vehicle.

, Approximation coefficients.

.

Number of neighbors of agent .

Lagrange multiplier for the local upper bound

constraint.

Lagrange multiplier for the global inequality

constraint.

The set of indices of vehicles that have been

allocated with the local upper bound of power.

Consensus variable for .

Consensus variable for .

I. INTRODUCTION

T
ECHNOLOGIES used to update utility electricity systems

with computer-based automation and control through

two-way communications structures constitute the core of the

“smart grid” concept [1]. Enabling the transition to plug-in

hybrid electrical vehicles (PHEVs) and plug-in electrical vehi-

cles (PEVs) is one of the anticipated benefits of the smart grid [2].

These vehicles provide many incentives for the transportation

industry and the environment [3]. Large-scale integration of

these vehicles has potential impacts and benefits for the grid.

One of the apparent impacts is the increase of the peak demand

[4], which can destabilize the grid if not managed properly. On

the other hand, the PHEV/PEVs can benefit the grid by being

treated as a flexible load through charge/discharge scheduling to

shape the load profile [4], [5]. Moreover, on the customer side,

the increased satisfaction from the charging process in terms of
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time and cost of charging as well as the state-of-charge (SoC) of

the vehicle, when leaving the charging station, can improve the

adoption rate of the electric vehicles (EVs). Therefore, employ-

ing efficient energy-management policies to control and opti-

mize the charging process for EVs is becoming a critical need for

the future grid. The enabling technology is called vehicle-to-grid

(V2G) technology [6]. In general, V2G technology is operated in

a large scale and involves optimization strategies with single or

multiple objectives [7]. The process of optimal dispatch of

PHEV/PEVs using the V2G technology is called “smart charg-

ing” [8], [9]. The focus of this paper is on a “smart charging”

method using unidirectional V2G technology.

The existing smart-charging approaches for PHEV/PEV

charging in the literature, in most cases, are centralized. The

charging stations are required to transmit data to a control center

called aggregator [7]. The control center performs the necessary

computations and determines the optimal power allocation for

each unit and transmits it to the charging stations [10]–[13]. The

centralized approach works well for small-scale problems with a

small number of vehicleswhere each unit can send information to

the central controller directly without congestion. However, as

the number of PHEVs/PEVs increases and they spread over a

wide zone, such as a large city, the centralized approach loses

efficiency due to two main reasons.

1) The required communications and computational capacity

of the control center grows as the dimension of the problem

increases.

2) The system becomes fragile to single points of failure.

To solve the issues of centralized smart charging for large-scale

problems, research has started on decentralized PHEV/PEV

demand control. Inmost of the proposed decentralized approaches

in the literature, each charging station regulates its own power by

responding to an external signal [14]–[19]. Therefore, the compu-

tational burden is relieved from the control center. However, still a

center/aggregator is required to send the coordinating/pricing

signals. Specifically, in [14], low-voltage transformers coordinate

with each other by communicatingwith a high-voltage transform-

er to reduce the imbalances; in [15]–[17], the utility sends a central

price/event signal to all the charging stations to manage the

aggregate charging load; in [18], the distributed units respond to

changes in the price signal adjusted through a center; and in [19], a

hierarchical decentralized method is introduced in which central

aggregator broadcasts update/average information back and forth

to/from sub-aggregators and in some cases, the global constraint

to avoid overloads is violated.

In this paper, we introduce a cooperative distributed optimal

power-allocation algorithm to satisfy grid constraints and cus-

tomer preferences for large-scale charging of PHEVs/PEVs.

Unlike the aforementioned decentralized approaches, our algo-

rithm is completely center-free. It works based only on the local

sharing of information among the charging stations and has no

central aggregator/coordinator unit. Consequently, single-node

congestion is alleviated, and the system becomes more robust

against single points of failures.Moreover, the computational and

communications burden is divided among the distributed pro-

cessors, so the proposed approach is scalable. Unlike approaches

that are based on dual decomposition (e.g., [19]), in our algorithm

prior to the convergence, the global constraint is never violated.

The idea of our algorithm is shown in Fig. 1. Related work is

done in [20]. The current paper explains the algorithm in

theoretical details and studies its scalability and sub-optimality

and compares it with centralized algorithms. Similar concepts are

also used in our research group to optimally manage distributed

energy resources on the generation side [21].

Organization of this paper is as follows. Section II provides the

problem statement. In Section III, we propose our distributed

consensus-based algorithm. Section IV presents the numerical

analysis and results, and the concluding remarks are made in

Section V.

II. PROBLEM FORMULATION FOR LARGE-SCALE OPTIMIZATION

OF PHEV/PEV CHARGING

The problem of PHEV/PEV community charge allocation can

be formulated as an optimization problem consisting of an

objective function and appropriate constraints.

A. Objective Function

Different factors, such as battery longevity [10], the amount of

charge and tightness of the deadline [11], flattening of the overall

load profile and reduction of the load variance [22], and the cost

of charging for vehicle owners [17], can be considered in

defining the objective function for PHEV/PEV charge

coordination.

Satisfaction of the PHEV/PEV users from the charging service

is directly related to the SoC of the vehicle, when leaving the

charging station. Therefore, in this paper, similar to [12], the

objective function is defined as the weighted sum of the SoC of

the vehicles at the next time step

where is the vector of the power allocated

to the vehicles, is the total number of vehicles, is

the SoC of the battery pack of the th vehicle at the next iteration,

and is the priority weighting for the th vehicle, as well as a

non-negative value. Depending on the desired performance, the

weights can prioritize vehicles based on the remaining time of

charge, remaining battery capacity to be charged, and/or the

customer’s willingness to pay.

B. Relationship Between SoC and Charging Power

The objective function is defined in terms of the SoC because,

on the customer side, the SoC of the vehicle at the end of the

Fig. 1. Cooperatives distributed demand management for PHEV/PEV commu-
nity charging.

1908 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 3, AUGUST 2014



charging period is the main issue of concern. To find the

relationship between the allocated power for charging and the

SoC, we need a model for the battery. In a certain operating

range, the battery can be modeled as a capacitor circuit. In this

range, the variation of the SoC is proportional to the variation of

the battery voltage. More complicated battery models can be

considered in the optimization process, and this would be one of

the future works of the authors. Considering the capacitance

model, the equivalent capacitance of the th battery is then

calculated as

where is the capacity of the th battery in Coulombs and

is the operating range of the battery. The

change in the charge of the battery at each time step would be

. So, we can write

The energy provided to the battery during each time step

would be . Considering the efficiency of the charging to be

, the energy stored in the batterywould equal . Applying

conservation of energy

Substituting for from (4) into (3) yields

C. Constraints

Constraints represent the physical limits.

1) Global Constraint: There is a limit on the total amount of

power that the utility can allocate for charging purposes . It

is modeled as the upper bound of the utility’s power delivery

2) Local Constraint: Certain factors impose local bounds on

the amount of allocated power for each unit; for instance, the

maximum power output of the outlet (e.g., 4.6 kW for a standard

single-phase 230-V outlet), level of charging (e.g., 1.33 kW for

level 1), the maximum tolerable charging current , and the

maximum allowable SoC ( ) to avoid overcharging.

These constraints are mapped into one constraint for each unit

where is the upper bound of the allocated power

considering all the local limitations. As the V2G capability is

not considered here, the lower bound is set to zero, so the PHEV/

PEVs should not be discharged.

D. Optimization Problem Structure

Substituting for from (5) into (1)

The first two summations in (8) are independent of the

decision variables and, therefore, can be eliminated from

the objective function

To simplify the notations, we introduce

and and rephrase (9) as

Considering the constraints, the optimization problem in terms

of the allocated charging powers can be expressed as

Remark 1: More charging power for each unit results in a

higher SoC for the vehicle and therefore higher satisfaction for

the customers. That is why the objective function in (11) is a

monotonically increasing function in terms of the charging

power. If there was no limit on the total available charging

power, the optimal allocation of power for all the vehicles would

be the upper limit of the charging power at each charging station.

However, as the total available power is limited by the grid

constraints, the optimal allocation of power for each unit would

not necessarily be equal to the boundary value.

III. DISTRIBUTED CHARGING ALGORITHM

Our distributed charging algorithm is based onKarush–Kuhn–

Tucker (KKT) conditions of optimality [23].
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A. KKT Conditions of Optimality

Consider the general optimization problem of the form

If is a solution of (12), then there are constants

and , called KKT multipliers

[23], such that

The conditions (13)–(16) are called KKT conditions and are

necessary for optimality. When the objective function is convex

and the constraints are affine (as in our case), the KKT conditions

are sufficient for global optimality as well [23].

B. Nonlinear Approximation of the Cost Function

In order to simplify the optimization process, we approximate

in (11) with

and choose and to minimize the norm of

the difference between and for

By solving (17)

With this approximation, we can write the optimization

problem as (19) where . Note that as

is a constant addition, it can be eliminated from the

objective function

Fig. 2 shows the curves of and for , and

. The effect of this approximation on the

optimality of the solutions is studied in Section IV.

C. Solution to the Optimization Problem

By applying the first KKT condition (13) for the optimization

problem defined in (19), we get

where is the KKT multiplier associated with the global

inequality constraint and and for are associ-

ated with the local constraints (one for each of the bounds). If the

local inequality constraints are strictly satisfied at the optimal

point, based on (15), we would have . Applying this

to (20), we get a positive value for , which indicates that

based on condition (15). Solving for

The value for already satisfies the non-negativity

constraint. This trait is the direct result of the approximation in

Section II-B. In order to guarantee that the upper bound limits are

also satisfied, we set those values of that violate the local

maximum bound to their maximum value and exclude their

Fig. 2. Actual objective function and the approximated objective function.
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values from . Then, we use the same procedure in (21) to

allocate the remaining power to the remaining vehicles. These

iterations are repeated until all vehicles receive a valid allocation

of power. This method of allocating powers terminates in a

maximum of iterations, and the final point satisfies the KKT

conditions of optimality. Because of space limitations, we skip

the proof.

D. Distributed Implementation of the Algorithm

Themethod explained in Section II-C can be implemented in a

distributed fashion. The required global information to assign the

powers to the remaining vehicles would be the terms

and , where is the set of

indices of all the vehicles allocated with their maximum allow-

able power. Each of these terms is composed of the summation of

some local information. We introduce two consensus variables

and for the th unit to access the global information

using a local sharing of information with neighbors, based on

consensus algorithms [24], [25].

Table I shows the step-by-step algorithm for finding the

optimal power allocation at the th node. The first step is

initialization. For all , the variable is initialized

as and is initialized as zero, except in one of the nodes

where the variable is initialized as . Without the loss of

generality, this node is indexed as 1. The second step is the

consensus phase. During this phase, each charging station

updates its and variables according to

where is the set of neighbors of node , and are

connectivity strengths, which are chosen such that

. It can be shown that with this choice of

connectivity strengths, consensus values converge to the average

of the initial values of all the nodes if the nodes form a connected

group (i.e., if there is a path via neighbors between any two

nodes) [16].

Equation (22) can also be represented in the matrix form as

where

and

At steps 3–5, each individual charging station uses the global

information from the consensus phase along with its own local

information to decide about its power allocation by calculating

as

Equation (26) basically evaluates (21) by noting that consen-

sus values have converged to the average of their initial values

If exceeds , the charging station allocates

as the optimal allocation of power and subtracts

from its variable and from its variable to

eliminate the information of charging station in subsequent

consensus phases. The charging stations that have already

reached their power limit ( ) will not change their

power allocation in subsequent iterations of the algorithm. Step

6 of the algorithm closes the loop; the algorithm goes back to

step 2 and another consensus phase starts. The distributed

algorithm for each node will terminate if no change in the

consensus values occurs after the consensus phase. Due to

the cooperative distributed nature of this algorithm, we call it

the cooperative distributed PHEV/PEV demand management

(CDPDM) algorithm.

TABLE I
COOPERATIVE DISTRIBUTED PHEV/PEV DEMAND MANAGEMENT

(CDPDM) ALGORITHM
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Remark 2: One of the requirements for the proposed

cooperative distributed algorithm is connectivity for the

communications network. Considering that the power grid

network and the power feeders form a physically connected

system, the connectivity for the communications network can be

realized by having a communications network similar to the

physical power network.

IV. SIMULATION RESULTS AND ANALYSIS

This section presents the performance of the proposed distrib-

uted algorithm in Section III under different case studies. In all

the case studies, each charging station is running the cooperative

distributed algorithm shown in Table I. The algorithm is initial-

ized every s, which is the optimization step. During each

optimization step, the algorithm keeps running an inner loop

between steps 2 and 6.

In all the case studies, the rationale for choosing the proper

parameter values is as follows: battery voltage ranges and

capacities are typical values for the PHEV/PEV batteries taken

from standard charging profiles such as the ones in [26]. SoC can

be any value between 0 and 1, and for the case studies, it is

randomly selected for each EV. Arrival/departure times are also

random and different PHEVs/PEVs can arrive and depart at

different times and the maximum available power for each

charging station ( ) is determined by the charging level

(e.g., 3.3 kW for single-phase, level 2 charging) and battery

constraints.

The first case study shows how the algorithm works during

each optimization step, and the second case study considers the

successive usage of the algorithm in the long run. The robustness

of the algorithm to link/node failures is also tested. To make the

demonstrations tractable, the number of charging stations in the

first two case studies is kept at five. The communications

topology between charging stations is chosen similar to the

power network topology as shown in Fig. 3. If a single link/

node fails in this topology, the rest of the graph will still remain

connected and thus, the remaining nodes would be able to

continue cooperation with others, via consensus.

The third experiment studies the scalability of the algorithm.

The fourth experiment studies the sub-optimality of the

algorithm by benchmarking it against conventional centralized

optimization methods. For these experiments, Monte Carlo

simulations are used.

A. Case Study 1: Single-Step Optimization

A parking deck with five charging stations is considered. The

objective is to optimally allocate the available power based on the

priority of the vehicles. The priority for the th vehicle is set as

where is the amount of time, the th vehicle is going to

stay at the charging station, and is a positive value introduced to

avoid division by zero. Thus, the vehicles with lower SoC and

sooner leaving time have higher priority for getting charged. At

the th time step, the information regarding the battery side of the

vehicles is given in Table II.

The maximum number of neighbors of each node is two, so

according to the condition < , any

connectivity strength between 0 and 0.5 can be chosen to ensure

stability. Using a small value for the connectivity strengths

results in a slow convergence of the consensus algorithm. We

set all the connectivity strengths equal to 0.4, which is in the

feasible range for stability ( < < ) and is not small. In

general, the optimal selection of the connectivity strengths to

achieve fast convergence is itself an optimization problem that

has been described in [27] and is outside the scope of this paper.

The sampling time for the consensus phase is 1 ms and each

consensus phase consists of 50 iterations.

Fig. 4 shows the allocated power and the evolution of the

consensus variables over time. At the end of the first consensus

phase ( ), the fifth charging station reaches its maximum

power boundary. So, it subtracts its local information from its

consensus values ( and ) according to step 5 of the algorithm.

This causes the average of the consensus variables to decrease.

Consequently, the consensus variables converge to a new equi-

librium point (their new average), which causes other charging

stations to receive more power (because charging station 5

cannot consume any more power). Convergence to the new

equilibrium is seen as big drops in the plots of the consensus

variables.

By the end of the second consensus phase ( ), charging

station 2 reaches its maximum bound, which allows other

stations to receive more power. By the end of the third consensus

phase ( ), all the available power is allocated and all the

charging stations have received power in their feasible range.

Therefore, the consensus variables do not change any more and

the algorithm settles down.

Now, we consider a link failure between nodes 1 and 2 at time

. Upon link failure, the two nodes can no longer

Fig. 3. Communication and power network topologies for case studies 1 and 2.

TABLE II
INFORMATION ABOUT THE VEHICLES IN THE FIRST CASE STUDY
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exchange information with each other. When such a failure

occurs, the connectivity strength between the two nodes becomes

zero, namely . Fig. 5 shows the allocated power

and the evolution of the consensus states. The charging stations

can still converge to the same power allocation as shown in

Fig. 4. As mentioned in Remark 2, the connectivity of the

communications graph is the only requirement of the commu-

nications topology in order for the algorithm to work properly.

This is the direct result of using consensus algorithms, which can

work under switching topologies. After the link failure, the

communications network remained connected, and the algorithm

was able to converge. However, due to the loss of a connection

link, the convergence during the consensus phases had been

slowed down, especially in the second and third consensus

phases.

B. Case Study 2: Dynamic Optimization

In this part, we study the behavior of the algorithm in long

run. The vehicles arrive and depart at different times. More-

over, for the vehicles inside the charging stations, parameters

such as SoC and voltage change due to the charging process.

So, the optimization becomes dynamic and the single-step

optimization problem to be solved (as in case study 1) keeps

changing.

Five vehicles with different initial SoCs and different arrival

and departure times are considered as shown in Table III. The

desired SoC is 0.9 and themaximumpower output of each station

is 3.3 kW. The priority weights are defined similar to case

study 1. We simulate the distributed charging control model for

8 h. The charging stations change their power allocation every

10 min. Fig. 6 shows the charging profiles of the vehicles over

time. At time , two PHEVs are in the charging stations.

PHEV2 has an earlier departure time and, therefore, gets higher

charging rate. At time , PHEV3 arrives at the charging

station. As PHEV3 needs to leave very soon, its priority for

getting power is higher than those of PHEV1 and PHEV2.At this

time, PHEV1, which leaves later than the others, has the lowest

priority. Therefore, its charging power drops to near zero, to

allow PHEV3 to get more charging power. At time ,

Fig. 4. Allocation of power and evolution of consensus states for case study 1
with no link failure.

Fig. 5. Allocation of power and evolution of consensus states for case study 1
with single-link failure.

TABLE III
INFORMATION ABOUT THE VEHICLES IN THE SECOND CASE STUDY

Fig. 6. Charging profiles for case study 2 with no node failure.
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PHEV3 leaves with . The allocation of power during

the rest of the time can be explained similarly. We can see that at

all times, the total consumed power is below 5 kW. The current

profiles are drawn to show that the charging currents resulted

from the optimization process are within the feasible boundaries

(i.e., ). This is done by translating the boundary

on the charging current into a boundary on the charging power

via multiplying it by the terminal voltage of the battery. This

boundary then serves as a local constraint for the optimization

problem.

Now, we consider the case where node 2 fails to operate at

and recovers at . Fig. 7 shows the charging

profiles under this scenario. Upon failure, node 2 loses its

connection with all its neighbors. However, the rest of the nodes

remain connected. When node 2 fails, its charging rate drops

down to zero and no change happens in the SoC of the respective

vehicle. When node 2 recovers at , PHEV2 starts to be

charged again. Similar to the case without node failure, all the

local and global constraints are satisfied.

Remark 3: To see why the algorithm is robust against single-

link/node failures, we note that information exchange is

happening through the consensus algorithm

The global information is the summation of local information

The second summation on the right-hand side of the equation

under balanced weights (i.e., ) always equals

zero. Now if a link between two nodes , fails, the connectivity

strength between those two nodes becomes zero (i.e.,

). Then still and

as a result, . Thus, the global inform-

ation (summation of the local information) remains intact.

Therefore, if the communications graph remains connected

after the failure, the consensus values still converge to the true

average (i.e., average of the global information). The proposed

algorithm uses consensus networks to access the global

information. Thus, it will be robust to any link failures that do

not affect the connectivity of the communications networks.

Also, when one node fails to communicate with its neighbors,

then the rest of the group can continue their operations, provided

that their communications graph is connected.

C. Scalability Analysis

In this section, we test the per-node computational scalability

of the proposed distributed algorithm. To do so, we perform

Monte Carlo simulations. Each node represents a charging

station. The range for the number of nodes for the experiments

is 10–450. For each value of the number of nodes, we ran 100

Monte Carlo simulations [28].

The parameters in each simulation are randomly sampled from

their feasible ranges as shown in Table IV. A random network

topology is chosen for each simulation.

The number of operations each node needs to perform until

reaching the optimal point is calculated as follows:

where and are the numbers of outer and inner loops,

respectively, of the algorithm prior to convergence and is the

average number of neighbors of each node. Basically,

represents the total number of times the consensus operation is

performed at each node, and, according to (22), each consensus

operation involves multiplications on an average.

To count the number of outer loops, we count the number of

times we have to repeatedly use (21) until all vehicles get a valid

allocation of power. To count the number of inner loops, we look

at the number of iterations the average consensus needs to reach

within 2% of the final value. According to [27], this value can be

calculated as

where is the spectral radius of update matrix in (23).

Fig. 7. Charging profiles for case study 2 with node failure.

TABLE IV
MONTE CARLO SIMULATION SAMPLING RANGE
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Figs. 8 and 9 show the minimum, maximum, and average

number of the operations among 100 random simulations as a

function of the number of nodes. The case studies are repeated for

and . Each dot in the figure corresponds to a set of

100 simulation data.

A logarithmic trend line is fitted to the data points using a least

squares error approach. The coefficient of determination ( ),

with a maximum value of 1, represents how well the data is

explained by the curve [29]. It can be seen that for both the

figures, the logarithmic trend explains the increase in the average

computational complexity with . In other words, by

increasing the number of charging stations, the average compu-

tational complexity for the cooperative distributed algorithm

grows almost logarithmically rather than exponentially. There-

fore, the proposed distributed algorithm is scalable. By noting

that each multiplication operation in the algorithm corresponds

to a data-packet transfer between two nodes, the per-node

communicational burden would exhibit exactly the same scal-

able behavior.

D. Sub-Optimality of the Algorithm: Benchmarking Against

Centralized Algorithms

In this section, we study the sub-optimality of the solutions

returned by the proposed distributed algorithm by benchmarking

it against two centralized nonlinear optimization algorithms:

sequential quadratic programming (SQP) and interior point

methods. SQP methods are some of the most successful nonlin-

ear programming algorithms [30] and are used on nonlinear

problems where the objective function and the constraints are

both continuously differentiable. Interior point methods are also

conventional algorithms for solving constrained nonlinear opti-

mization problems [31]. Both of these algorithms are provided by

MATLAB through the fmincon optimization function.

For both the centralized algorithms, the optimization problem

to be solved is the problem represented by (11), prior to the

nonlinear approximation of the cost function. To have a fair

comparison, the optimality of the solutions for the centralized

and distributed algorithms should be measured using the same

objective function. Therefore, we use the original objective

function of interest in (1) to compare the optimality of the

algorithms.

We use Monte Carlo simulations and generate 100 different

scenarios where the number of nodes is randomly selected be-

tween 10 and 100 and the parameters are randomly sampled from

the ranges specified in Table IV. For each simulation scenario,

three algorithms are used and the value of the objective function is

recorded. Then, the error of the proposed cooperative distributed

algorithm with respect to the th algorithm is calculated as

where is the objective function value using the coopera-

tive distributed algorithm and is the objective function value

from the th algorithm. The distribution of errors is shown in

Fig. 10.Wecan see that themaximumdeviation fromoptimality is

1.8%.

V. CONCLUSION

In this paper, we introduced a cooperative distributed energy

management scheme for community charging of PHEV/PEVs.

Themain advantages of our approach are preventing the need for

a central energy management unit, being more robust against

single-link/node failures, and being scalable in terms of

single-node computations despite a small amount of sub-

optimality ( ). First, we formulated the charge allocation

Fig. 8. Computational complexity of CDPDMalgorithm as a function of number
of nodes ( ).

Fig. 9. Computational complexity of CDPDMalgorithm as a function of number
of nodes ( ).

Fig. 10. Distribution of optimization error for CDPDM algorithmwith respect to
(a) the Interior Point method and (b) SQP.
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as a constrained nonlinear optimization problem and developed a

procedure to solve the problem by checking KKT conditions.

Then, we decomposed the charge information to local and global

parts and proposed a distributed consensus-based algorithm to

find the optimal charging policy in each charging time frame

using peer-to-peer communications capabilities among charging

stations. The performance, scalability, and robustness of the

algorithm to single-link/node failures were case-studied.

To apply the proposed algorithm in the real world, practical

issues such as EV and charging station communications features,

voltage and frequency deviations at the terminals, losses in the

power lines, and feeders as well as more complicated battery

models should be considered in the distributed optimization

process. This will be the future work of the authors.
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