

Saturable Inductors for Superior Reflexive Field Containment Capability in **Dynamic Inductive Power Transfer Systems** Alireza Dayerizadeh, Dr. Srdjan Lukić

Overview

In dynamic Inductive Power Transfer (IPT) applications, it is required that the segmented transmitter coil transfer power to a moving receiver coil. One proposed method to achieve this is using the reflexive field containment approach [1].

Figure 1: Reflexive field containment topology [1].

In this approach, field containment performance is defined in terms of current gain G.

$$G = \frac{I_{t,coupled}}{I_{t,uncoupled}} = \frac{1}{Q \cdot n}$$

Quality factor is denoted as Q, and n is the capacitor tapping coefficient:

$$n = 1 + \frac{C_2}{C_1} \qquad Q = \frac{R_{eq}}{\omega_0 L_2}$$

Our new study introduces a saturable inductor L_{max} to maximize the difference between the coupled and uncoupled currents through the transmitter coil.

• As the

$$L_{eff} = \frac{2L_{max}}{\pi} [si]$$

Figure 3: Normalized L_{eff} as a function of I_{peak} .

 $G_{Total} = G + G_{Sat} =$

chosen value of L_{max} :

$$G_{Sat} = \omega L_{max} \left(\frac{1 \pm \sqrt{1 - R_r} \frac{16}{\pi \omega L_{max}}}{2R_r} \right)$$

Method

coils couple, the reflected impedance allows the current in the transmitter coil to increase and saturate L_{max} . The inductance of the saturable inductor seen by the system is *L_{eff}* [2]:

With the inclusion of L_{max} , the new system current gain G_{total} is:

$$=\frac{I_{coupled}}{I_{uncoupled}}=\frac{1}{Q\cdot n}+\frac{\omega L_{max}-\omega L_{eff}}{\frac{\omega M^2}{L_2}Q\cdot n^2}$$

 G_{sat} may be designed for based on a

At perfect coupling, the inductor is sufficiently saturated to minimize L_{eff} , allowing for power transfer at the designed system resonant frequency.

Results

- Experimental results demonstrated coupled and uncoupled currents of .398 A and 4.06 A respectively.
- The observed current gain G is thus approximately 10.2.

Figure 4: Uncoupled (top) and coupled (bottom) current through the transmitting coil and voltage across C_{comp} .

Segment	Component	Value
	L_s	191uH
	L _{sat} - L _{eff}	160uH - ~22uH
	C_{s1}	430nF
Transmitter System	C_{comp}	755nF
	L_2	191uH
	C_{I}	330nF
	C_2	1616nF
Receiver System	R _{Load}	1.1 Ω

Table I: Testbed system component values.

NC STATE UNIVERSITY

Testbed Details

Figure 4: Testbed with SiC inverter and associated components.

- Using a full bridge SiC Inverter and bandpass filter, the topology shown in Fig. 2 was constructed.
- An EPOCS T38 core was used as the saturable inductor L_{max} .

Conclusion

• In comparison to the reference system [1], inclusion of L_{max} allows a high level of current gain and correspondingly reduces the induced electromagnetic field emissions.

References

{1] K. Lee, Z. Pantic and S. M. Lukic, "Reflexive Field Containment in Dynamic Inductive Power Transfer Systems," in IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4592-4602, Sept. 2014.

[2] S. Chung, S. Huang, J. Huang, and E. Lee, "Applications of describing functions to estimate the performance of nonlinear inductance," IEE Proceedings-Science, Measurement and Technology, vol. 148, no. 3, pp. 108–114, 2001.

