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Abstract—This paper presents a novel algorithm for recovering
missing data of phasor measurement units (PMUs). Due to the
low-rank property of PMU data, missing measurement estimation
can be formulated as a low-rank matrix-completion problem.
Based on maximum-margin matrix factorization, we propose
an efficient algorithm based on alternating direction method of
multipliers (ADMM) for solving the matrix completion problem.
Comparing to existing approaches, the proposed ADMM based
algorithm does not need to estimate the rank of the target
data matrix and provides better performance in computation
complexity. In addition, we consider the case of measurements
missing from all PMU channels and provide a strategy of
reshaping the matrix which contains the received PMU data for
estimation. Numerical results using PMU measurements from
IEEE 68-bus power system model illustrate the effectiveness and
efficiency of the proposed approaches.

Index Terms—Missing data estimation, ADMM, low-rank ma-
trix completion, phasor measurement units

I. INTRODUCTION

The wide-area measurement system (WAMS) using phasor

measurement units (PMUs) has been regarded as one of the

key enabling technologies in monitoring, control, and protec-

tions of the next-generation power grids [1]. With continuous

increase in PMU deployment and the resulting explosion in

data volume, the design and deployment of an efficient wide

area communication and computing infrastructure, especially

from the point of view of resilience against a large number

of missing data, is evolving as one of the greatest challenges

to the power system and IT communities. With thousands of

networked PMUs being scheduled to be installed in the United

States by 2020, exchange of synchrophasor data between

balancing authorities for any type of wide-area control will

involve an enormous number of data flow in real-time per

event, thereby opening up a wide spectrum of probabilities of

data losses and data quality degradations in an unpredictable

way. Data missing makes the system unobservable, degrades

the performance of the state estimates, and weakens the

security and stability of the system. Therefore, recovering
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missing PMU measurements has become a significant and

inevitable problem in power systems.

PMU data can be structured as a matrix with each column

and row representing the measurements of one channel and

sample instant, respectively. Since large amounts of PMU

data exhibit heavily correlated property [2]–[4], the matrix is

approximately low-rank, and the problem of recovering the

missing PMU data can be formulated as a low-rank matrix-

completion problem. Studies on matrix completion algorithms

are extensive, including atomic decomposition of minimum

rank approximation (ADMiRa) [5], singular value projection

(SVP) [6], information cascading matrix completion (ICMC)

[7], among which nuclear-norm-regularized matrix approx-

imation [8]–[11] and maximum-margin matrix factorization

(MMMF) [12] are widely adapted. Using nuclear-norm-

regularized matrix approximation, a singular value threshold

has to be designed which influences the estimate accuracy.

Developing the nuclear-norm-regularized matrix approxima-

tion, an alternating direction method (ADM) is provided for

solving the matrix completion problem [13], [14]. However,

the calculation of the singular value decomposition (SVD) in

ADM approach increases the computational time and com-

plexity. Based on MMMF, Jain et al. [15] and Hardt [16]

proposed alternating least squares (ALS) schemes for solving

the matrix-completion problem. Further, softImpute-ALS is

provided for reducing the computational complexity [17]. Gao

et al. applied the MMMF approach on recovering the missing

PMU data [18] firstly. Most of the existing approaches rely

on an estimation of the rank r of the data matrix, which is

typically unavailable and time variant in practice. Inaccurate

estimation of r introduces modelling errors in the matrix

completion problem. The computational complexity is lower

with a smaller r. On the other hand r cannot be too small

for estimation accuracy. Therefore, design of an adaptive and

scalable online algorithm of PMU data recovery is an open

challenge.

Motivated by these insights, we develop an algorithm that

can recover the missing PMU measurement with low com-

putational complexity and less operating time. The funda-

mental set-up for this optimization was based on MMMF

and alternating direction method of multipliers (ADMM)

[19]–[21]. Firstly, the observed PMU data is structured as

a matrix M ∈ R
n1×n2 whose columns and rows represent

the measurements from one channel and the same sampling

instant, respectively. Then we formulate the data recovery as

an optimization problem in which we minimize the rank of



the estimated matrix X̂ while keeping elements in X̂ the

same as the corresponding ones in M if they are present.

An ADMM algorithm is proposed to solve the optimization

problem in an iterative way. In the update equations there

is no matrix inverse computation, which immensely reduces

the computational complexity. In addition, it is not necessary

to estimate the rank of the original data matrix X without

missing elements, which significantly cuts down the influence

of the uncertain factor into the performance. Furthermore, we

consider the case of missing data from all PMU channels. In

this case, all elements in one row of the observed matrix M

are missing. One efficient algorithm is presented to reshape

the observed matrix, and the lost data from all the channels

can be recovered using ADMM approach. We illustrate the

results using simulations of the IEEE 68-bus system model.

II. PROBLEM FORMULATION

Persistent model is one simple and traditional method to

recover the missing PMU data. It utilizes the temporal cor-

relation of the PMU measurements to recover the lost data

in one channel. However, if in the disturbance scenario the

measurements in the same channel are missing during a long

time, the recovery with persistent model is not an advisable

choise. In this section, we process a spatial-temporal blocks

of PMU data, present the low-rank property of PMU data, and

formulate the data recovery as a matrix completion problem.

A. Low-rank property of PMU measurements

Denote X ∈ R
n1×n2 as the PMU measurement matrix

without data missing. Each column and row correspond to

a sequence of measurements of one PMU channel, and the

PMU measurments at the same sampling instant, respectively.

Due to the noise, all the singular values of X are larger than

zero. An approximating rank approach, referred to Frobenius

norm proportion [22], is stated as follows.
√
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r + . . .+ σ2
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≥ β, (1)

where σ1 > σ2 > . . . > σl are the singular values of the

matrix and β, 0 < β ≤ 1, is the proportion factor. r in (1)

denotes the approximate rank of the matrix. Since the PMU

measurements of voltage or current phasors or magnitudes

from different lines or buses are strongly correlated, the

approximate rank of X is much smaller than min{n1, n2}
[2]–[4]. Due to the low-rank property of PMU data, missing

PMU measurement estimation can be converted into a low-

rank matrix completion problem.

B. An ADMM based approach for PMU data estimation

Let M ∈ R
n1×n2 and X̂ ∈ R

n1×n2 denote the observed

PMU measurements with missing data and the recovered

matrix, respectively. Since X̂ should be a low-rank matrix,

the matrix completion problem is formulated as follows:

min
X̂∈Rn1×n2

rank(X̂)

subject to (X̂ −M)⊙ Is = 0,
(2)

where ⊙ denotes the Hadamard product, i.e.,

[Y 1 ⊙ Y 2]ij = [Y 1]ij [Y 2]ij . Is is the structural identity

with its ijth entry defined as

[Is]ij =

{

1, if [M ]ij is observed data;
0, if [M ]ij is missing data.

(3)

Unfortunately, (2) is NP hard to solve, and can be relaxed to

a tractable optimization problem [23]:

min
X̂∈Rn1×n2

||X̂||∗

subject to (X̂ −M)⊙ Is = 0,
(4)

where the nuclear norm ||X̂||∗ is the sum of the singular

values of X̂ .

Using MMMF to further change the optimization problem

(4), let X̂ = A
T
B, in which A ∈ R

n2×n1 and B ∈ R
n2×n2 .

Without loss of generality, we assume n1 > n2. Since ||X̂||∗
is equivalent to min

A,B

1
2 (||A||2F + ||B||2F ) with Frobenius norm

||.||F [12], the optimization function is equivalent to

min
A,B

1
2 (||A||2F + ||B||2F )

subject to (AT
B −M)⊙ Is = 0.

(5)

In the previous work [15], [16], people estimated the

rank r of X̂ , set A ∈ R
r×n1 and B ∈ R

r×n2 , and ap-

plied ALS to solve (5). The computational complexity is

O((n1 + n2)r
3). If r = min{n1, n2}, the computational com-

plexity is O((n1+n2)(min{n1, n2})
3), which is a biquadrate

function of min{n1, n2}. With smaller r the computational

complexity is reduced. However, the value of r cannot be

too small to guarantee the estimation accuracy. For reducing

the influence of the uncertain factor into the performance, we

set the sizes of matrices A ∈ R
n2×n1 and B ∈ R

n2×n2 only

depend on the size of observed matrix M . In addition, we

apply the ADMM method to solve (5) in an iterative way

using the Lagrangian multiplier approach.

The augmented Lagrangian for (5) can be formulated as

L =
1

2
(||A||2F + ||B||2F ) + trace(wT((AT

B −M)⊙ Is))+

ρ

2
||(AT

B −M)⊙ Is||
2
F , (6)

where A and B are the matrices of the primal variables, w

is the matrix of the dual variables or the Lagrange multipliers

associated with (5), and ρ > 0 denotes a penalty weight.

After some algebraic, the augmented Lagrangian can be

rewritten as

L = 1
2 (||A||2F + ||B||2F ) + trace((w ⊙ Is)

T(AT
B −M))+

ρ
2 trace(((A

T
B −M)⊙ Is)

T(AT
B −M)).

(7)

The gradients of the augmented Largrangian L in (7) with

respect to A and B are respectively given by

∂L

∂A
= A+B(w ⊙ Is)

T + ρB((AT
B −M)⊙ Is)

T,

∂L

∂B
= B +A(w ⊙ Is) + ρA(AT

B −M)⊙ Is. (8)



Algorithm 1 ADMM algorithm for PMU data estimation

Initialize A
0, B0, w0, and k = 0, and determine the value

of ρ, ǫ and kmax.
Do:

A
k+1 = −B

k(wk
⊙ Is)

T
− ρBk(((Ak)TBk

−M)⊙ Is)
T,

B
k+1 = −A

k+1(wk
⊙ Is)− ρAk+1(((Ak+1)TBk

−M)⊙ Is),
w

k+1 = w
k + ρ((Ak+1)TBk+1

−M)⊙ Is,
k = k + 1.

(9)

until:

The stopping criterion ||(Ak+1)TBk+1 − (Ak)TBk|| < ǫ

is reached or k > kmax.

Given the derivation, the ADMM algorithm for solving the

optimal problem (5) is illustrated in Algorithm 1.

The updates in Algorithm 1 requires no matrix inverse, and

the computational complexity is O(n1n2min{n1, n2}), which

is a quadratic function of min{n1, n2}. In addition, it is not

necessary to estimate the rank of matrix X̂ , which reduces

the influence of uncertain factor into the performance. Penalty

weight ρ denotes the step size of the dual variable update. In

general, large ρ results in fast convergent rate.

Compared to approaches like interpolations and persistent

models, ADMM algorithm utilizes the spatial and temporal

correlations of PMU data to improve accuracy. In the persistent

model, it replaces the missing data by the previous available

data point. The persistent method recovers the lost data only

based on temporal correlation. If the data from one channel

are missing during a long time, and if there exists a dynamic

in the time, then the estimation using persistent method

doubtlessly is a nightmare. On the other hand, based on the

spatial correlation, the missing data can be recovered using

ADMM. We will compare the estimates using ADMM and

persistent model with IEEE 68-bus power system simulation

in Subsection III-C.

C. Special case: missing data from all the channels

The power system often suffers natural and artificial distur-

bances during operation. It is possible that the data from all

the channels are missing simultaneously under communication

failure. In this case, no existing algorithms can recover the

missing data. For solving this problem, the observed matrix

M has to be reshaped to avoid some of its rows missing. Our

goal is that the proportion of missing elements in one row

of the reshaped observed matrix M is as small as possible.

Meanwhile the corresponding reshaped recovery matrix X̂ is

still low-rank.

We provide an alternative method, called cut-column re-

shaping method (CCRM), for reshaping the observed matrix.

Using CCRM each column with n1 length is separated into

n∗ shorter columns with a length of n1

n∗ . Thus, the n1-by-n2

matrix is reshaped to a n1

n∗ -by-n2n
∗ matrix, and the original

column correlation is held. The length of the new column

should be larger than the row length of the original matrix,

i.e., n1

n∗ > n2. n∗ also satisfies that
⌈

n1

n∗+1

⌉

< n2, where ⌈x⌉

denotes the smallest integer number which is larger than x.

Thus the numbers of rows and columns of reshaped matrix

are both larger than n2. Due to the size, the rank of M is no

more than min{n1, n2}. Using CCRM the rank of reshaped

matrix M̃ will not be reduced by the new size. In addition,

with holding the column correlation, CCRM minimizes the

proportion of zero elements in one row of reshaped matrix.

Consider a simple example to illustrate the reshaping

method. A 6-by-2 matrix M can be expressed as:

M =
[

m1 m2

]

=

[

m11 m21 m31 m41 ⋆ m61

m12 m22 m32 m42 ⋆ m62

]T
(10)

whose fifth row is missing. Using CCRM with n∗ = 3 and

matrix M is reshaped into a 2-by-6 matrix:

M̃ =
[

m̃1 m̃2 m̃3 m̃4 m̃5 m̃6

]

=

[

m11 m31 ⋆ m12 m32 ⋆

m21 m41 m61 m22 m42 m62

]

.
(11)

Now for each column and row, not all measurements are

missing. If m1 and m2 are strongly correlated, m̃1 and m̃4,

m̃2 and m̃5, and m̃3 and m̃6 are strongly correlated in pairs.

The ranks of matrice M and M̃ are both no more than 2.

The proportion of missing elements to the first row is 1
3 ;

while it is 1 to the fifth row of M . CCRM is illustrated in

Algorithm 2. The missing PMU measurements from all the

Algorithm 2 Cut-Column Reshaping Method

(1) Check whether any row of the observed n1-by-n2 matrix

M owns all missing elements.

(2) If yes, let n∗ be the maximum divisor of n1, which

satisfies n1

n∗ > n2.

(3) Separate each column of M into n∗ shorter columns

with n1

n∗ length. The original n1-by-n2 matrix is reshaped

into a n1

n∗ -by-n2n
∗ matrix.

channels can be recovered using ADMM in Algorithm 1 after

reshaped matrix M using CCRM in Algorithm 2. Notice that

if all the elements in one column of the reshaped observed

matrix are missing, they cannot be recovered using ADMM.

The recovery accuracy using ADMM will be declined sharply,

if the measurements in one channel are missing more than n1

2
successive sampling instants. With less lost data, the recovery

accuracy will be enhanced.

III. SIMULATION RESULTS

The IEEE 68-bus system is used to carry out the simulation

to verify the proposals. We build up a PMU measurement

matrix whose column and row corresponding to a sequence

voltage phasors on 86 lines and the sampling instants, re-

spectively. The simulated measurements are obtained using the

power systems toolbox (PST) nonlinear dynamics simulation

routine s simu and the data file data16m.m [24]. A three-

phase fault is imposed at the line connecting buses 1 and 2. The

fault starts at t = 0.1s, and clears on bus 1 at t = 0.15s and on

bus 2 at t = 0.20s. For approaching to the true measurements,



we add white Gaussian noise (N (0, 0.001)) into the PMU

data. The measurements are observed during 60s and there

are 30 samples in one second. The 1800-by-86 matrix X is

with no missing measurements and its approximate rank is

1 with β = 0.995 in (1). To test the recovery accuracy of

the presented ADMM algorithm, some observed data in X

is set to be lost. Since the PMU data are missing arbitrary

and unpredictable, in this paper we consider two cases of

missing data: (1) Missing data randomly. The delivery of PMU

measurements from multiple remote locations of power grids

to monitoring centers can result in the random unavailability

of PMU measurements; (2) Missing data in all channels

simultaneously. The transform link malfunctions may result

in data missing in all channels. We choose the penalty weight

ρ = 0.00075 using ADMM, and the dual parameter λ = 1.5
and the estimated rank of filled completion matrix r = 20
using ALS for comparison. In the paper, the computational

time is obtained by operating Matlab programming.

A. Case 1: Missing data randomly

In this case, we assume an independent and identical

distribution (i.i.d) of the missing rate. For each data point,

with a probability the measurement is missing and set to zero

in M artificially. Notice that it is different from the data which

is equal to zero. If the actual data is zero, the corresponding

element in Is is equal to 1. While if the data is missing, the

corresponding element in Is is equal to 0. Table I compares

some properties of ALS and ADMM in Case 1. Though the

TABLE I
COMPARISON OF ALS AND ADMM FOR THE RECOVERY

# iterations time Sensitivity of parameters

ALS ≈ 50 > 7s Less stringent

ADMM ≈ 100 < 1s More stringent

number of convergence iterations using ADMM is larger than

the one using ALS, the computational time using ADMM is

less than 1s, which is much smaller than using ALS.

Fig. 1 shows the statistic, maximum, and minimum values

of mean absolute errors MAEs

∑

ij:[Is]ij=0

|[X̂]ij−[X]ij |

∑

ij:[Is]ij=0

[Is]ij
using

ADMM and ALS with different observed data probabilities,

respectively. The observed data probability denotes the likeli-

hood of the observed data occurrence, i.e.,
∑

[I]ij
n1n2

. The statis-

tic, maximum, and minimum values of MAEs are obtained by

Monte Carlo method with 500 independent times. With larger

probability of observed measurements, MAE becomes smaller.

The statistic values of MAEs using ADMM and ALS are close

with each observed data probability. The difference between

the maximum and minimum values of MAEs using ADMM

is larger than the one using ALS.

B. Case 2: Missing data in all channels

In this case, one row of data in matrix M is lost. The 1800-

by-86 matrix M which contains voltage phasor measurements

can be treated as 1800 sub-matrices with a size of 1-by-86.
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Fig. 1. Case 1: MAEs using ADMM and ALS against different observed
data probabilities, respectively.

The observed data probability denotes the proportion of the

observed sub-matrices to the total ones. For recovering the

missing data in one row, firstly we reshape the observed matrix

using CCRM. Since the rank of the orginal matrix is no more

than 86, the number of the rows and columns of the reshaped

matrix should be more than 86 for avoiding reducing the rank

artificially. In addition, with holding the column correlation,

one purpose of reshaping is minimizing the proportion of

zero elements in one row of the reshaped matrix. Thus using

CCRM, the original 1800-by-86 matrix M is reshaped to

a 90-by-1720 matrix M̃ with n∗ = 20. With β = 0.995 in

(1), the approximate rank of the reshaped observed matrix

X̃ is 1. Since the size of the transposed reshaped observed

matrix is similar to the observed matrix, the computational

time using ADMM and ALS is similar to the results in Table

I, respectively.

Fig. 2 shows the statistic, maximum, and minimum values

of MAEs using ADMM and ALS with different observed

data probabilities, respectively. The statistic values of MAEs

using ADMM and ALS are still close. Compared with Case

1, the MAEs using both ADMM and ALS are larger. Though

approximate rank of reshaped matrix X̃ is still 1, the mini-

mum singular value becomes larger, whose influence into the

recovery accuracy cannot be ignored. If the observed matrix

X is not reshaped, the missing row cannot be recovered

using neither ADMM nor ALS, and the MAEs with different

observed data probabilities are all around 0.278.

C. Comparison among ADMM, ALS, and persistent model

approaches

In the persistent model, it replaces the missing data at the tth

sampling instant with the data at the (t−1)th if it is available.

Only based on the temporal correlation of the PMU data, in

a disturbed scenario the data which are lost during several

successive sampling instants cannot be recovered successfully

using persistent method. In this subsection, we let the data

be lost from the 90th sampling instant to the 200th sampling

instant on 9 lines. Fig. 3 shows the estimated measurements

using ADMM, ALS, and persistent methods from sampling
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Fig. 2. Case 2: MAEs using ADMM and ALS against different observed
data probabilities, respectively.
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Fig. 3. Comparison of the estimated measurements using ADMM, ALS, and
persistent model. The blue line shows the actual measurements.

instant 1 to 300 on Line 1. The blue line shows the values

of actual measurements. Using both ADMM and ALS ap-

proaches, estimated measurements are close to the actual one.

While using the persistent model, the estimate deviates from

the actual data due to the dynamics in the measurements.

IV. CONCLUSION

In this paper, we presented ADMM algorithm for missing

PMU measurement recovery. We illustrated our results with

noisy measurements from the IEEE 68-bus power system

model. Compared with the ALS algorithm, the computational

complexity and operating time are much smaller using the

ADMM algorithm. In addition, the ADMM algorithm avoids

to estimate the rank of filled completion matrix, which reduces

the influence of the uncertain factor into the performance. We

also consider the case of missing data in all the channels simul-

taneously and provide one approach to reshape the observed

matrix for the recovery. Our future work in this area will

include recovering continuous several rows of the observed

matrix with all missing elements and testing the proposal using

actual PMU data.
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