FREEDM Industry Advisory Board Minutes May 3, 2018 10:00 am – 11:30 am US eastern

Attendees

Company	Name	Membership Level
ABB	Sandeep Bala	Full
Duke Energy	Kevin Chen	Full
Eaton	Miguel Chavez	Associate
EPRI	Bruce Rogers	Associate
FPL	Paul Taylor	Associate
SAS	Arnie de Castro	Associate
Schneider Electric	John Shea	Associate
Sensus	Jared Gregory	Associate
Total	Wente Zeng	Full
Weidmann	Giuseppe Gatti	Associate
FREEDM	Ken Dulaney Awal Alireza Dayerizadeh	

The meeting began with attendance and reading the antitrust statement.

We reviewed the agenda for the annual conference on June 6-8. The face to face IAB meeting will be June 6 at McKimmon and include presentations from faculty and a group discussion. June 7 is the public day and includes University speakers and keynotes from ARPA-E and the US Department of Defense. There are several industry panels planned for the conference. Ken clarified that we are not expecting presentations or slides but rather a focused discussion on the particular topic. The full agenda can be found in Appendix A.

IAB members are also encouraged to send Human Resource contacts to Ken so they can join the new email list focused on HR issues like career fairs, graduating students, etc. John Shea announced an IEEE Young Professionals meeting focused on hiring. He will send information to Ken.

FREEDM will also be represented at several upcoming conferences: <u>IEEE Transportation</u> <u>Electrification Conference</u>, <u>IEEE Symposium on Power Electronics for Distributed Generation</u>, and <u>PAC World</u>. Ken provided an update on industry recruiting efforts. Risho is a materials company based in Japan, Kohler may provide a generator for in-kind membership, and Typhoon HIL expressed interest in membership after hosting a workshop for students at NC State.

There is an IAC meeting for the CREDENCE project with Irish Universities on May 17. FREEDM IAB members are welcome to join.

Ken shared a few interesting facts from his recent conferences:

- From the Microgrid Global Innovation Forum, he noted that audience members were very interested in FREEDM technologies but had questions on reliability in high temperature environments. Several member companies were also represented at the conference.
- A company here in Raleigh, Causam Energy, announced that they have an SEC compliant blockchain product.
- There was some discussion on the outage cost versus new generation question. The notion is that industrial customers will install expensive microgrids because they must have higher reliability. Arnie noted this has happened in pharmaceuticals and food products where downtime can cost millions per minute. Bruce noted that this is one business case for microgrids but is a relatively small segment of the microgrid market. He has not seen a large number of customers install microgrids. Paul said FPL customers have not expressed much interest either. Datacenters are one exception. They have asked to locate in strategic locations on the grid closer to transmission. Most companies want higher resiliency but are not willing to pay for it yet. He said Publix is a good example of backup generation use but not exactly microgrids.
- FREEDM was also well represented at the North Carolina State Energy Conference.

Next, Ali Dayerizadeh discussed his research in wireless power transfer for electric vehicle charging using emitting coils in the road and receiver coils in the vehicle. The FREEDM breakthrough involves reflexive field containment. The process does not require additional hardware or processing algorithms to activate emitter coils individually and instead relies on circuit design to achieve maximum coil coupling. Recent advances include a saturable inductor that reduces the magnetic fields in uncoupled condition and achieves current gains of 11x. Ali can be reached at <u>adayeri@ncsu.edu</u>. His presentation is in Appendix B.

M.A. Awal presented his work on distributed power electronic controls. He reviewed existing state of the art approaches for medium voltage DC using Modular Multilevel Converters and cascaded H-bridges that require very fast communications. To achieve true decentralized control requires applying non-linear control methods with distributed passive components. This can be achieved using high frequency switching. Applications include medium voltage AC to DC conversion and single stage power conversion for PV. Awal's controller uses only local current and voltage measurements. This method allows for decentralized rather than just distributed control. One application for this methodology is for SST power module controls. The next stage of research is to move from simulation to prototype hardware controller. Awal's email is <u>mawal@ncsu.edu</u>. His presentation is in Appendix C.

The call concluded at 11:10. The next meeting is face to face on June 6 at the Annual Conference.

Actions

1. Ken will reach out to individual members regarding panel participation.

Appendix A Annual Conference Agenda

Annual Conference Agenda June 7- 8, 2018

Thursday, June 7		
McKimmon Center		
8:00am	Registration & Coffee	
8:30am	Introduction	Dr. Louis Martin-Vega, Dean of the College of Engineering, NCSU
8:35am	Welcome	Dr. Randy Woodson, Chancellor, NCSU
8:50am	Keynote Speaker	Dr. Sonja Glavaski, Program Director, ARPA e
9:30am	FREEDM Overview	Dr. Iqbal Husain, Director, FREEDM
9:50am	Graduate Education Programs	Dr. Mesut Baran, Professor and College Education Program Director, FREEDM
10:00am	Break	
10:20am	FREEDM Innovations	FREEDM Faculty
11:40am	National Science Foundation Presentation	Dr. Carmiña Londoño, National Science Foundation
11:50am	Industry Speaker	Dr. Iulian Nistor, Department Manager, Corporate Research, ABB
12:00pm	Lunch and Networking	
1:00pm	Introduction to Perfect Pitch	Susan Sanford, Research Triangle Cleantech Cluster
1:10pm	Perfect Pitch Contest	FREEDM Students
1:30pm	Grid Resiliency	Faculty and Industry Panel
2:15pm	Education and Workforce	Dr. Pam Carpenter, Director of Education and Workforce Development, FREEDM
2:25pm	Alumni Speaker	Likhita Ravuri, Research Electrical Engineer, Voltserver
2:35pm	FREEDM and Power America	Dr. Dan Stancil, Department Head, Electrical and Computer Engineering, NCSU
2:50pm	Break	
3:05pm	Energy Priorities for Department of Defense Installations	Joseph Corrigan, Senior Advisor, Kelley Drye
3:45pm	Research Project Summaries	FREEDM PhD Candidates
4:30pm	Poster Session	
5:30pm	Transition to Alumni Center	

FREEDM 10 Year Celebration			
The Dorothy and Roy Park Alumni Center			
6:00pm – 8:00pm	Reception & Dinner with Special Guest Speaker	Nelson Peeler, Duke Energy	

Annual Conference Agenda June 7- 8, 2018

Friday, June 8		
McKimmon Center		
8:00am	Registration and Coffee	
8:30am	Introduction	Dr. Iqbal Husain, Director, FREEDM
8:40am	Alumni Speaker	Kat Sico, Substation Engineer, Duke Energy
8:50am	Power of Data Analytics	Faculty and Industry Panel
9:30am	Alumni Speaker	Arvind Govindaraj, Hardware Engineer, Verily (Google) Life Sciences
9:40am	Power Electronics on the Grid	Faculty and Industry Panel
10:20am	Break	
10:40am	Advances in EV Deployment	Faculty and Industry Panel
11:20am	NC Storage Project Update	Dr. Joe DeCarolis, Associate Professor, NCSU Civil Engineering
11:40am	Faculty Research Highlights	Lunch with your favorite researcher
12:00pm	Lunch and Transition to Lab	

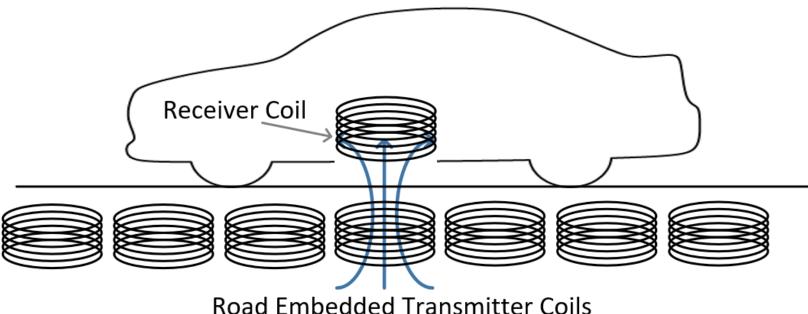
Keystone Science Center			
1:00pm – 2:30pm	Review of Simulation Lab, High Bay and Low Bay	Keystone Science Center	

Appendix B Saturable Inductors for Wireless Power Transfer

FREECHS SYSTEMS CENTER Saturable Inductors for Superior Reflexive Field Containment in Inductive Power Transfer Systems

NCSU Invention Disclosure: 18-084

Alireza Dayerizadeh Dr. Srdjan Lukić



FREE SYSTEMS CENTER **Dynamic Wireless Power Transfer**

Wireless Power Transfer: An Alternative to Conductive Charging.

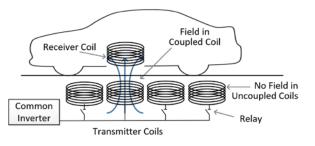
• Source to load efficiencies of over 90% are possible at coupling coefficients of .2.

Road Empedded Transmitter Cons

Roadway Embedded Dynamic Wireless Power Transfer Systems Allow for:

- Increased range and reduced charging times.
- Reduced vehicle energy storage requirements

SYSTEMS CENTER


Dynamic WPT may be accomplished through an array of segmented transmitting coils that sequentially couple to a passing receiving coil, thus isolating the field emissions to the coupled coil. Challenges include:

Field in

Coupled Coil

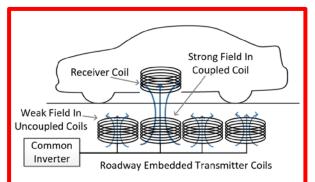
—— No Field in Uncoupled Coils

- Precise Receiver Position Feedback is required.
- Efficient and fast methodology to selectively energize coupled coil.

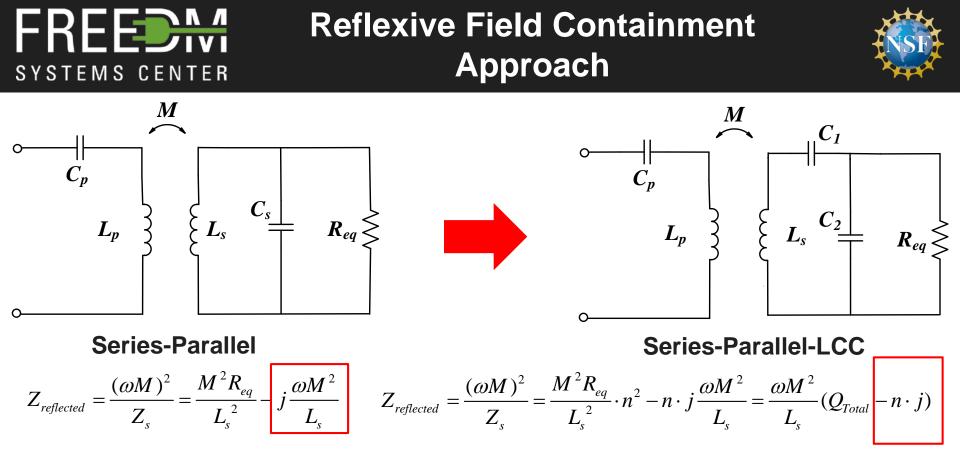
Possible Approaches

Receiver Coil

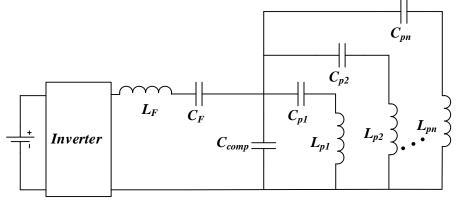
Inverter


Position sensor and relays for power flow control to coupled coils.

Power each coil with a dedicated inverter (cost prohibitive in large applications).

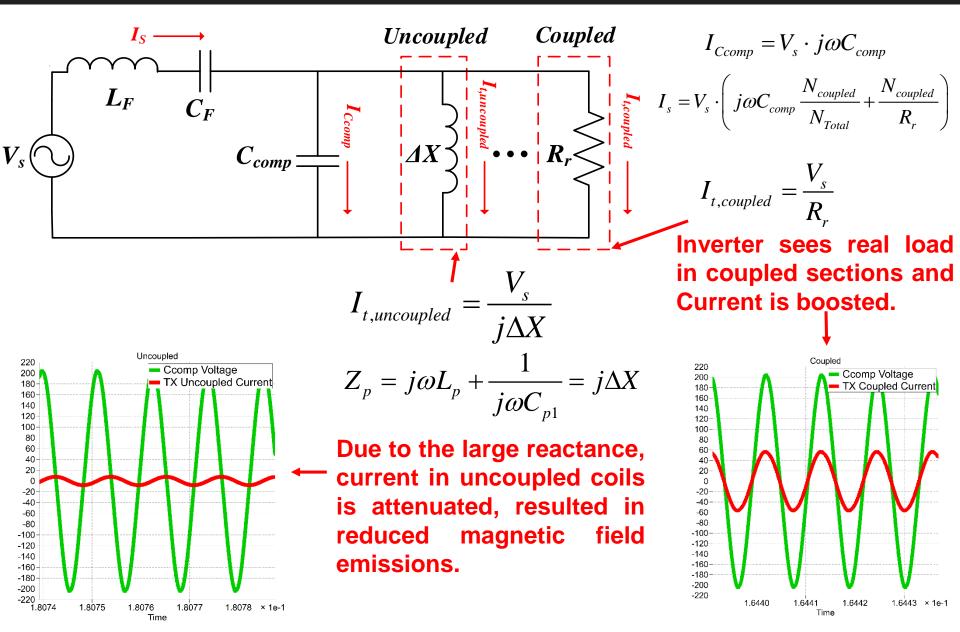

Inverter Inverter Inverter

Transmitter Coils


We will focus on this approach.

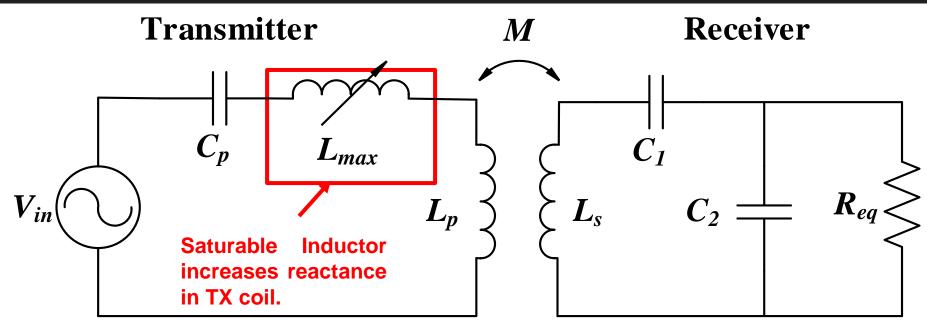
Exploit reflected impedance of receiving coil to control emitted field reflexively

- Large uncompensated Inductive reactance limits current flow in uncoupled TX coils.
- TX compensation is such that it's resonance is offset from the system operating frequency.
- Reflected capacitive reactance is exploited to bring the TX coil into resonance and boost current flow.

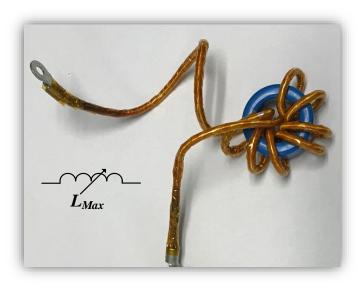


Allows for Segmented TX Coils

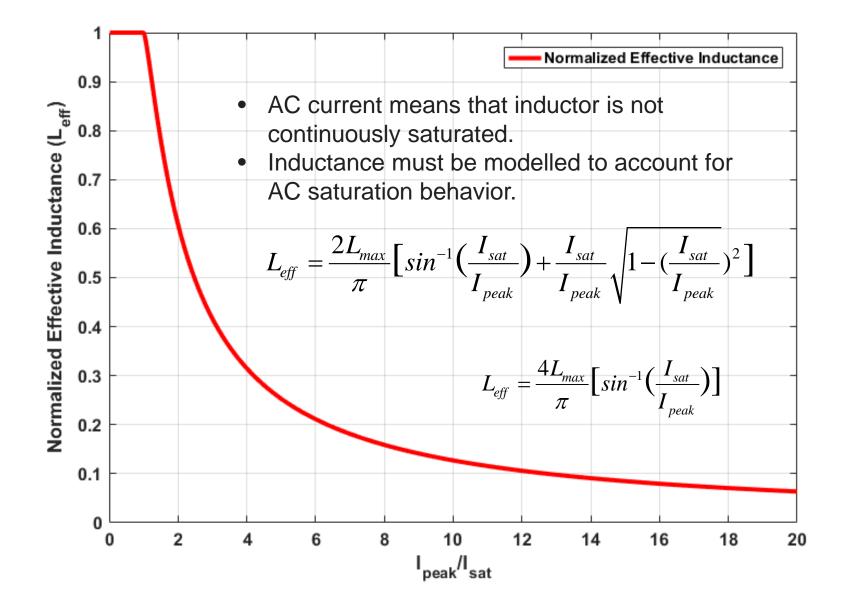
FREEMS CENTER


Transmitter Design

Improving Field Containment

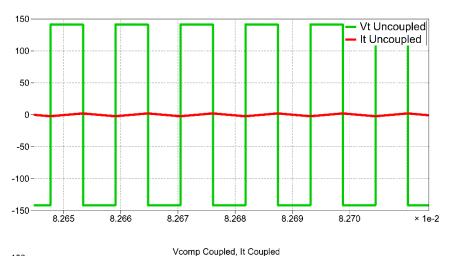


The Saturable inductor:

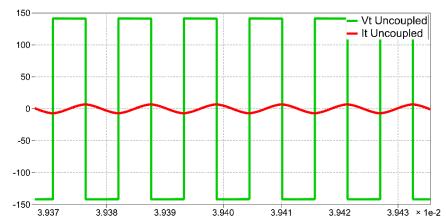

SYSTEMS CENTER

- Maximizes the difference between coupled and uncoupled currents in the TX coil.
- Saturates as the system becomes coupled.
- Improves system current gain (and field attenuation performance).

FREEMS CENTER

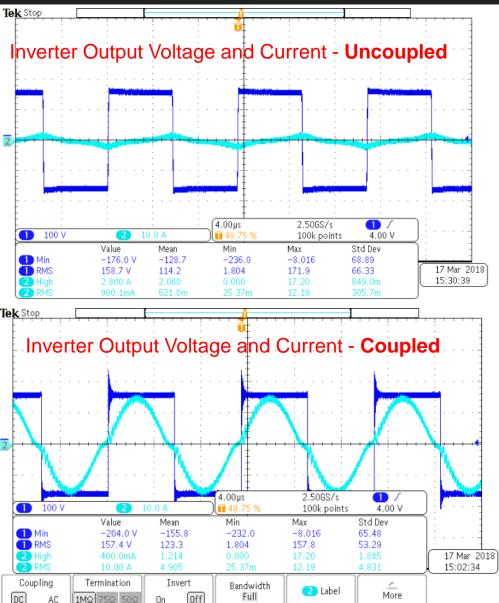


Simulation – Comparison to Reference System




System With Saturable Inductor

Reference System


Current gain ~ 11

Current gain ~ 3

FREEMS CENTER


Hardware Validation

Transmitter (TX)*	
L _p	190 <i>uH</i>
C _p	22.65 <i>n</i> F
L _{max}	180uH
L _{eff}	23uH
C _{sat}	143nF

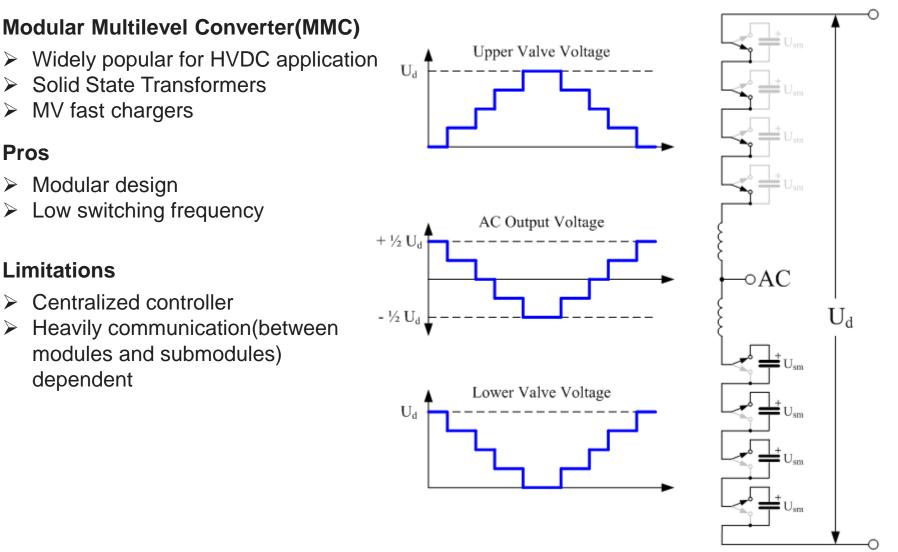
Receiver System	
L _s 237 <i>u</i> H	
C ₁	16.56 <i>nF</i>
C ₂	82.81 <i>nF</i>
n	6
R _{Load}	7.5

Input Voltage	171.1 V
Input Current	8.65 A
Input Power	1480 W
Output Power	1208.4 W (95.2^2/7.5)
Efficiency	81.6%
Current Gain	11.1

Appendix C Modular Redundant Medium Voltage Power Electronic Control

Modular Redundant Medium Voltage Power Electronics Enabled By Decentralized Control

M A Awal Advisers: Iqbal Husain, Wensong Yu


3 May, 2018

FREE SYSTEMS CENTER

State-of-the-Art for Medium/High Voltage Application

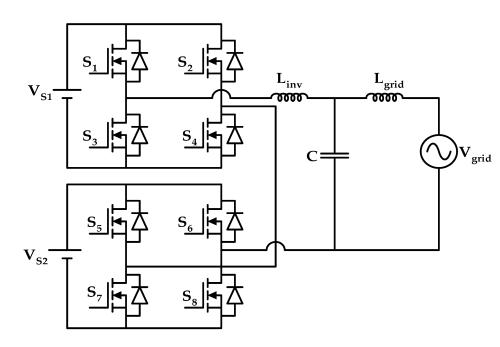
True modularity has not been achieved in terms of control

FREEDAY SYSTEMS CENTER

State-of-the-Art for Medium/High Voltage Application

Cascaded H-Bridge (CHB)

- Popular for SST application
- Industrial motor drives

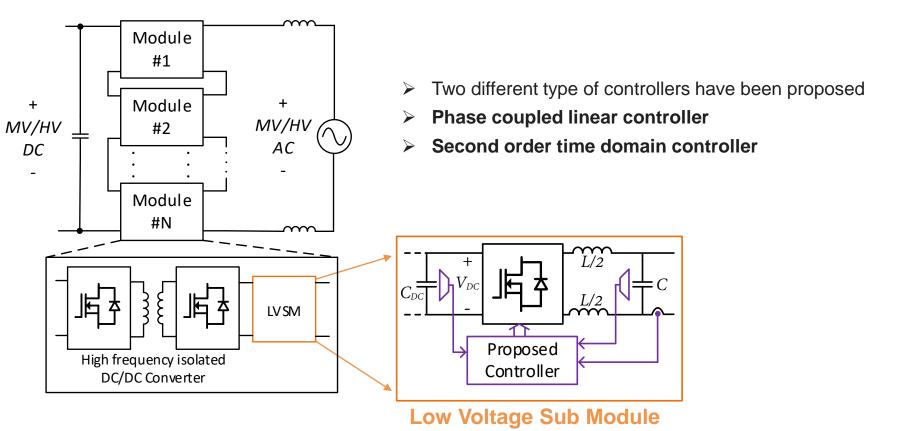

Pros

- Modular design
- Low switching frequency

Limitations

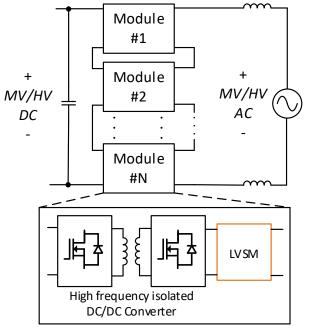
- Centralized controller
- Heavily communication(between modules and submodules) dependent
- Distributed/pseudo decentralized control has been proposed requiring some form of communication

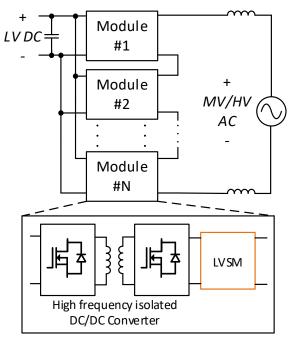
True modularity has not been achieved in terms of control



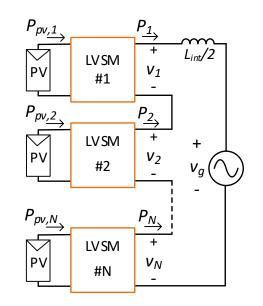
4

Key Innovations


- Apply non-linear control to achieve complete decentralized control of each module without any communication
- Switch at highest possible frequency leveraging widebandgap power devices
- Distribute passive filter components among modules

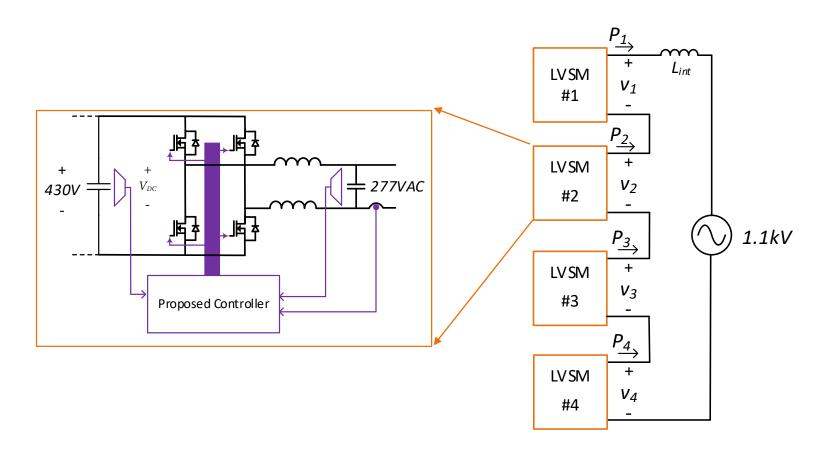

FREEDAW SYSTEMS CENTER

Possible Applications



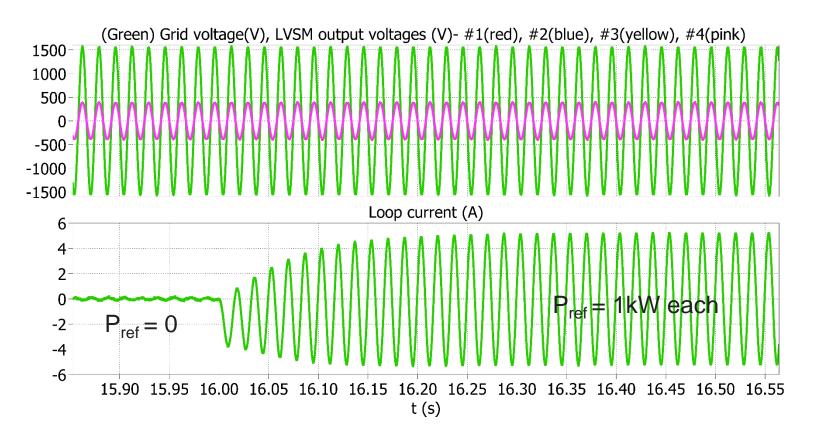
Input-Series-Output-Series MV\HVAC to MV\HVDC

Input-Series-Output-Parallel MV\HVAC to MV\HVDC



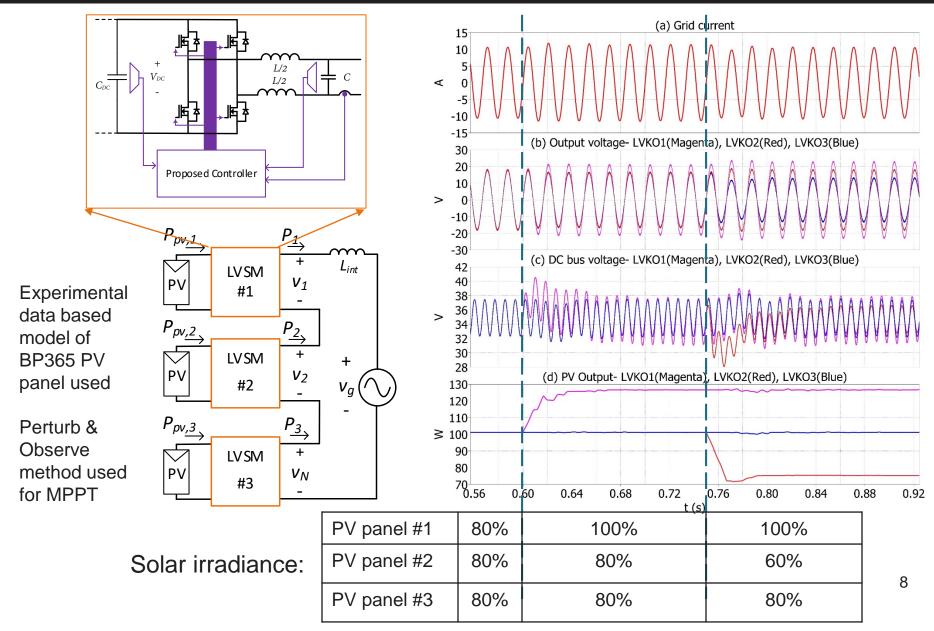
Single stage power conversion for PV Application

Reaching Medium Voltage AC



- Simulation done for single phase system
- ➢ Four LVSMs used, each with a 430V DC bus and 277VAC output
- 4 x 277 = 1.1kVAC used to emulate grid
- Possible for three phase systems

Reaching Medium Voltage AC



- Simulation done for single phase system
- Four LVSMs used, each with a 430V DC bus and 277VAC output
- > 4 X 277 = 1.1kVAC used to emulate grid
- Possible for three phase systems

Panel Level MPPT in AC Stacked PV Inverter

Current State of Research & Future Work

- Switching model simulation completed
- HIL test in progress
- Hardware test with scaled down rating in progress
- Paper accepted for ECCE 2018

?