Self-Oscillating WBG-based VHF Power Conversion for FREEDM Applications NCSU: Adam Morgan, Dr. Douglas C. Hopkins

Overview

System electrification requires power supplies that are:

- >99.99% efficient
- Contribute the least to system volume and weight (i.e. high power density)
- Make up the lowest percentage of system cost
- Without a doubt reliable

Switching frequencies entering the VHF range (>30MHz)

 Confluence of HF-FOM WBG devices, ZVS self-oscillating power circuits, advanced package technology

Cross-sectional views of fabricated 1.2 kV SiC Accu channel C-MOSFET, SG-MOSFET, and BG-MOSFE structures. All the structures have the same channel length (0.5 μ m), W_{JFET} (0.7 μ m), and JFET doping concentration $(3 \times 10^{16} \text{ cm}^{-3})$ [34]

Alignment with FREEDM mission

• Front-end DC-DC converter applications for Smart-Grid (PV, energy storage, data centers, transportation, space, etc.)

+ - CREE/Wolfspeed

Power Conversion System Specification	
Input DC Voltage (V)	800 V
Output DC Voltage (V)	48 V
Switching Frequency (Hz)	> 500,000 Hz
Output Power (W)	1200 W
Efficiency (%)	> 95%

Grid modernization through innovation

Method

• Simplistic ZVS self-oscillating power circuit topology incorporating WBG devices (GaN, SiC) enhances reliability and lowers overall system cost by eliminating external gate drive circuit

 Resonant converter topologies naturally facilitate high frequency self-oscillation by tapping into resonant tank energy • LLC resonant converter integrates circuit parasitics into its resonant components

Enables plug-n-plug power electronics for interfacing renewables and energy storage with "N+1" redundancy and selfbalancing load sharing via passive impedance matching (PIM) across intercoupled resonant tanks [35]-[36]

> Equivalent commoninductor three-phase LC resonant converter ransformations from (a) common inductor to (b) equivalent circuit^[29]

PIM minimizes inductor and capacitor component mismatch due to aging, temperature, and tolerances ^[37]

Results

LLC resonant converter

 $P_{cond,MOSFET} = I_{rms}^{2} R_{on} = (13A)^{2} (65m\Omega) = 10.99W$ $P_{rectifier} = V_f I_{rms} = (0.7V)(25A) = 17.50W$ $\eta_{self-osc.} = (1 - \frac{67.88W}{1200W}) \times 100\% = 94.34\%$

