

Hedging Wind Risk through a Power-to-Gas enabled Integrated Energy System Junkai Liang, Wenyuan Tang, NC State University, NC

Most generation capacity will be natural gas and renewables

- Result of low natural gas prices
- Result of declining renewables technology costs
- Result of supportive policies

Renewable generation curtailment happens on an involuntary basis

- Transmission congestion
- Excess generation
- Voltage, or interconnection issues ۲

Power-to-Gas (P2G) technology

- Reduce the greenhouse gas
- Exploit the excess generation

Problem Formulation Modeling the energy hub

Natural Gas District Heat Wood Chips

Security constrained unit commitment for integrated system

- scheduling horizon
- Subject to the security constraints of power networks, natural gas networks, and energy hubs equipped with P2G
- Uncertainty is modeled as interval numbers

Technical Approach

Interval quadratic optimization

Benders Decomposition

- variables

→ Master Problem

• A key element in future energy networks • An interface between different energy

• The goal is to minimize the total cost over the

A special scenario reduction method The object value and solution are intervals Solving two deterministic optimization problems instead of solving a large-scale stochastic optimization problem

Computational intractability of the interval quadratic optimization due to binary

Decomposing the stochastic mixed-integer quadratic programming problem into one deterministic mixed-integer quadratic problem, and one stochastic quadratic programming problem that is solved by interval quadratic optimization

Case Study

An integrated energy system comprised of a 6-bus power network and a 6-node gas network

- Evaluate the value of energy hub
- Investigate the impact of transmission constraints: adjust the transmission capacity of line 1-4 from 100 MW to 50 MW

The Total Gas Supply over the Scheduling Horizon

		11.2		_
	Total Supply (Mcf)	Optimistic Scenario	Pessimistic Scenario	Exp Si
	With Energy Hub	18,672	22,189	20
	Without Energy Hub	19,805	22,854	2
The Total Operatory of the Operatory Lieving				

The Total Cost over the Scheduling Horizon Optimistic Pessimistic Total Cost (\$) Scenario Scenario With Energy Hub 199,130 214,820 206,410 217,340 Without Energy Hub

- An interval optimization based stochastic SCUC model for an electric-gas integrated energy system is proposed to optimally coordinate the operation of integrated system
- Energy hubs equipped with P2G technology are modeled in detail
- Interval optimization and Benders Decomposition are used to reduce computational burden without loss of optimality
- A case study verifies the applicability of the proposed method
- A case study demonstrates that P2G can be a promising method to reduce the wind curtailment
- A case study indicates that P2G can \bullet reduce the total operational cost and the total gas supply, especially when the curtailment is serious

Next Step

System level

- The economic viability of P2G
- The siting and the sizing of energy hubs
- Other uncertainties such as gas prices
- Dynamic model of the natural gas networks

Energy hub level

- Bidding strategy with the emergence of P2G
- Other ancillary services provided by P2G such as demand response
- Expansion planning of energy hub equipped with P2G

P2G is a new technology, many questions remain unknown!