

# **Designing Ultra-Fast, High Performance DC Circuit Breaker for Distribution Systems with Renewable Energy Resources** Landon Mackey, Md Rifat Kaisar Rachi, Dr. Chang Peng and Dr. Iqbal Husain

### **Motivation**

With the increasing demand of efficient & smart loads and rapid growth in renewable energy resources in its various forms, DC power distribution has become a suitable solution for many application, as shown in Fig. 1.

• To ensure reliable and safe operation of such systems, DC protection equipment is a key component.



Fig. 1: DC distribution system with renewable energy resources

### Background





Fig. 2: AC fault with zero crossing

- Fig. 3: Non synchronous wave forms
- AC has natural a zero-crossing that facilitates arc quenching during fault interruption.
- Lack of zero crossing in DC makes safe fault current interruption challenging.
- Lower system inductance leads to faster current rise during DC fault.
- Fast and reliable fault isolation is required to facilitate safe integration of distributed renewable energy resources (DRERs).

# **Actively Damped UFMS**

- Thomson coil actuation (TCA) is utilized to develop a medium voltage ultra-fast mechanical switch (UFMS) (Fig. 4).
- The switch motion is actively damped to facilitate isolation from DC faults.





- number of stages used.





faster



### Progressively Switched Solid State DCCB

Voltage differential is built up in a progressive manner leading to a reduced peak fault current.

Response during fault isolation is defined by

• Fig.8 illustrates the concept of differential voltage build up in progressive switching and fig.9 shows progressive switching for different step number.

## **Current Sensing & Control**

- **Bi-directional current** sensing.
- Provides ground fault protection.
- Incorporates manual control.



Fig. 10: Current sensing and buffering



### **Experimental Results**

A four-stage bidirectional progressively switched solid-state prototype has been built and tested in a 380 Volt / 25 Amp test-bench under load.



Fig. 12: 4 stage solid state progressively switched DCCB prototype







Fig. 13: Test-bench setup for 380V/25 Amp system





### **Potential Impacts**

- Ultra-fast (< 2ms) and reliable fault isolation is provided in a DC distribution system.
- Reduction in peak fault current ensures reduced stress on protective devices and tied converters.
- Bi-directional nature of the protection element enables integration of DRERs in future smart grid designs to facilitate diverse energy capabilities.

### **Conclusion and Next Steps**

- A silicon MOSFET based four-stage progressively switched bi-directional DCCB with necessary control is built and tested.
  - Silicon Carbide (SiC) based semiconductor devices will be utilized in the next generation.
- The proposed high performance DCCB is suitable for safe and reliable harvesting of ocean energy.
  - Advanced algorithm for fault detection and isolation for an islanded subsea micro-grid is necessary which can be extended to other micro-grid applications.

### References

- [1] C. Peng, L. Mackey, I. Husain, A. Huang, B. Lequesne, and R. Briggs, "Active Damping of Ultra-fast Mechanical Switches for Hybrid AC and DC Circuit Breakers," IEEE Transactions on Industry Applications, *Volume: 53, Issue: 6, Pages: 5354 – 5364, Year: 2017.*
- [2] L. Mackey, C. Peng and I. Husain, "A Progressive Switching Scheme for Solid State DC Circuit Breakers," Abstract accepted for 2018 IEEE 9th International Symposium on Power Electronics for Distributed Generation Systems.
- [3] L. Mackey, M. R. K. Rachi, C. Peng and I. Husain, "Progressive Switching of Hybrid DC Circuit Breakers for Faster Fault Isolation," Abstract accepted for IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, 2018.

