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With the increasing demand of efficient & smart
loads and rapid growth in renewable energy
resources in its various forms, DC power
distribution has become a suitable solution for
many application, as shown in Fig. 1.

 To ensure reliable and safe operation of such
systems, DC protection equipment is a key
component.

DC Microgrid with
Distributed Generation,
Storage, and
Protection

Fig. 1: DC distribution system with renewable energy resources
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Fig. 2: AC fault with zero crossing Fig. 3: Non synchronous wave forms

« AC has natural a zero-crossing that facilitates arc
guenching during fault interruption.

« Lack of zero crossing in DC makes safe fault
current interruption challenging.

« Lower system inductance leads to faster current
rise during DC fault.

 Fast and reliable fault isolation is required to
facilitate safe integration of distributed renewable
energy resources (DRERSs).
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« Thomson coil actuation (TCA) is
utilized to develop a medium
voltage ultra-fast mechanical
switch (UFMS) (Fig. 4).

. The switch motion is actively * 4
damped to facilitate faster
isolation from DC faults.

Fig. 4: Ultra-fast mechanical
switch

Fig. 6: Mechanical displacement of actively

Fig. 5: FEA model of TCA
damped UFMS

Progressively Switched Solid

State DCCB

« Voltage differential is built up in a progressive
manner leading to a reduced peak fault current.

 Response during fault isolation is defined by
number of stages used.
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Fig. 7:Four-stage solid-state progressively switched DCCB

 Fig.8 illustrates the concept of differential voltage
build up in progressive switching and fig.9 shows
progressive switching for different step number.

Progressive Solid State Switching
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Current Sensing & Control

 Bi-directional current
sensing.

* Provides ground fault
protection.

* Incorporates manual -5

control.

Get currents-from
Legend sensor

Fig. 10: Current sensing and buffering
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Fig. 11: DC circuit breaker control loop flowchart

Experimental Results

» A four-stage bidirectional progressively switched
solid-state prototype has been built and tested in
a 380 Volt / 25 Amp test-bench under load.

Fig. 12: 4 stage solid state progressively switched  Fig. 13: Test-bench setup for 380V/25 Amp system
DCCB prototype

380 Volt, 25 Amp, 4 Stage, 0.50 ms DCCB Shutdown Experimental and Simulation Result Comparison
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« Ultra-fast (< 2ms) and reliable fault isolation is
« Reduction in peak fault current ensures reduced

« Bi-directional nature of the protection element

« A silicon MOSFET based four-stage progressively

« The proposed high performance DCCB is suitable
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Fig. 9: PSCAD simulation of progressively
switched DCCB

Fig. 8: Progressive Switching Concept
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Fig. 14: Experimental waveforms of 4 stage Fig. 15: Comparison between experimental
progressively switched solid state DCCB and simulation waveforms
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Potential Impacts

provided in a DC distribution system.
stress on protective devices and tied converters.

enables integration of DRERSs in future smart grid
designs to facilitate diverse energy capabilities.

Conclusion and Next Steps

switched bi-directional DCCB with necessary
control is built and tested.

« Silicon Carbide (SiC) based semiconductor
devices will be utilized in the next generation.

for safe and reliable harvesting of ocean energy.

« Advanced algorithm for fault detection and
Isolation for an islanded subsea micro-grid is
necessary which can be extended to other
micro-grid applications.
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