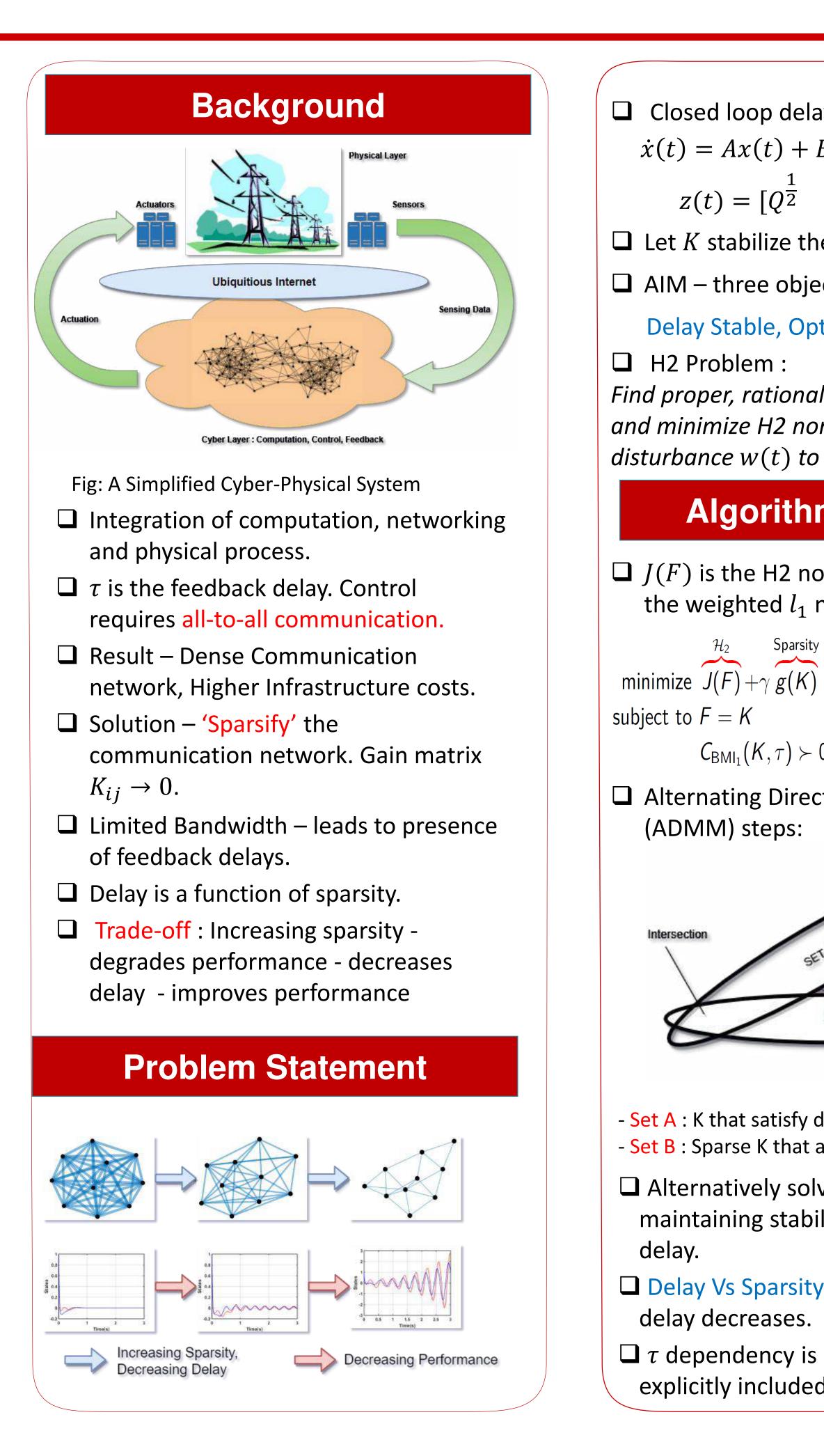
Sparse Optimal Control of LTI Systems Under Sparsity-Dependent Delays Nandini Negi and Aranya Chakrabortty



Closed loop delayed System:

 $\dot{x}(t) = Ax(t) + BKx(t - \tau) + B_{w}w(t)$ (1)

 $z(t) = [Q^{\frac{1}{2}} \quad R^{\frac{1}{2}}K]^T x(t) = C x(t).$

- \Box Let K stabilize the delayed system for τ .
- □ AIM three objectives :
 - Delay Stable, Optimal H2 norm, Sparsify K.

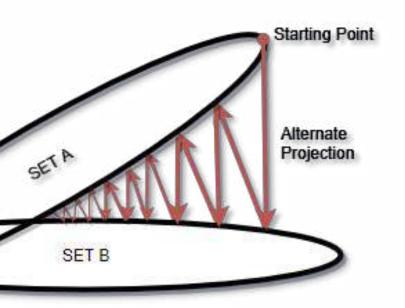
Find proper, rational K to internally stabilize (1) and minimize H2 norm of transfer function from disturbance w(t) to output z(t) for $\tau = 0$.

Algorithms Developed

 $\Box J(F)$ is the H2 norm of F with delay τ . g(K) is the weighted l_1 norm of K.

 $C_{\text{BMI}_1}(K,\tau) \succ 0, \ C_{\text{LMI}_2}(\tau) \succ 0 \} \rightarrow \text{Delay Stability}$

Alternating Directions Method of Multipliers (ADMM) steps:



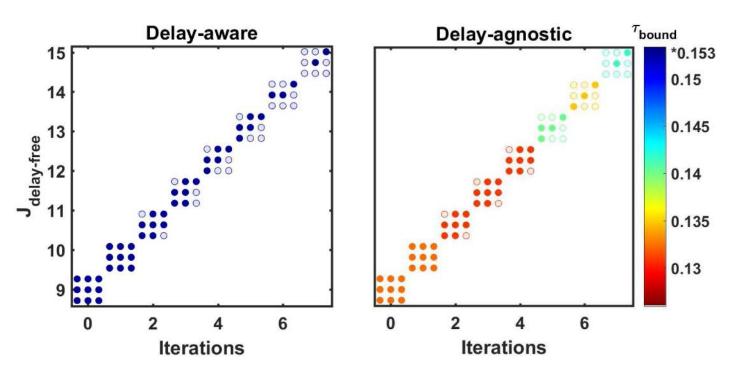
- Set A : K that satisfy delayed H2 optimality problem. - Set B : Sparse K that are stabilizing for (1).
- □ Alternatively solve each objective while maintaining stability with respect to
- Delay Vs Sparsity As sparsity increases,
- $\Box \tau$ dependency is on card(K). Cannot be explicitly included in ADMM.

- \Box As sparsity increases, τ decreases $\Longrightarrow K$ needs to be stabilizing for a smaller delay \Rightarrow set of stabilizing solution expands.
- **\Box** For optimal H2 norm need to include τ .
- Delayed performance is bad, especially, in case of large τ value.
- Delayed Systems are of infinite dimensions -Discretize the interval $[0, \tau]$ and create an augmented vector.
- □ Augmented vector– Includes past states.
- **Define** $J_{\tau}(K)$ on the augmented vector.
- Positive and finite iff the system is stable with the feedback delay.
- \Box \mathcal{A} new state matrix is defined to imitate the effect of delayed states.

$$\eta = \begin{pmatrix} \phi(-\tau_N = -\tau) \\ \phi(-\tau_{N-1}) \\ \vdots \\ \phi(-\tau_2) \\ \phi(0) = x(t) \end{pmatrix} \implies \mathcal{A}\eta = \mathcal{A} \begin{bmatrix} \Phi(-\tau) \\ \vdots \\ x(t) \end{bmatrix}$$

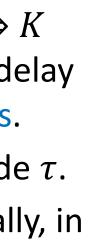
Simulation Results

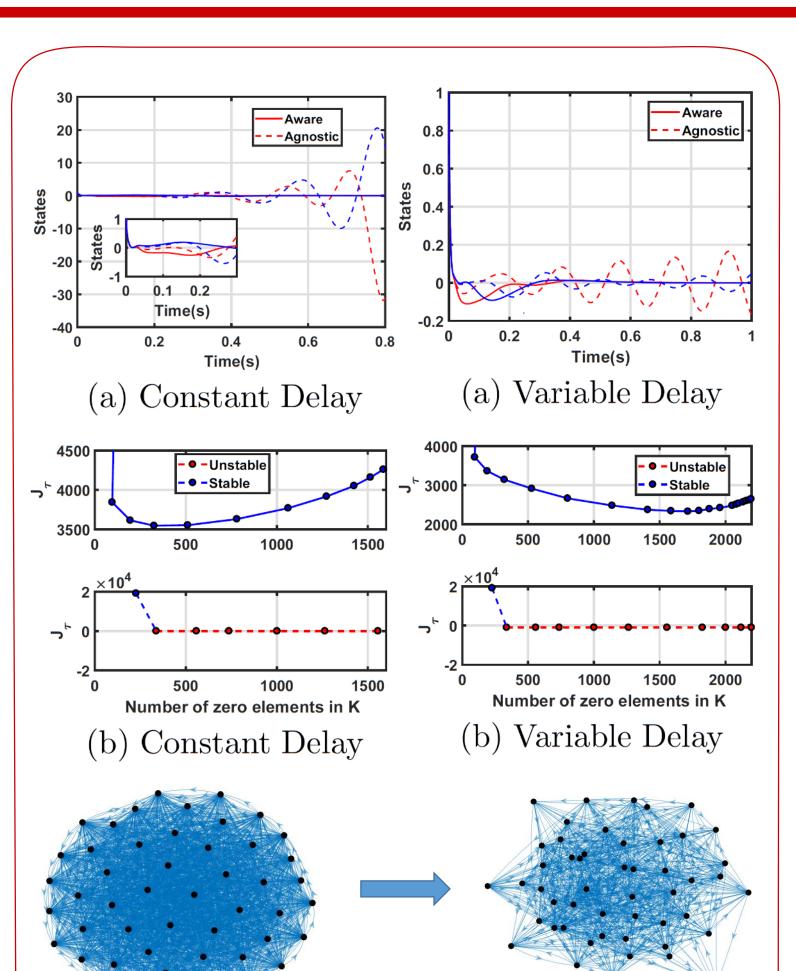
- Comparison with Delay-agnostic Algorithms.
- □ Case 1 : K is a 3x3 matrix. Observe the consistent maintenance of delay-bounds in our delay-aware algorithm. This does not include optimality with respect to the delay.



□ Case – 2 : K is a 50x50 matrix consisting of 2500 links. We include delay in H2 norm for this case.

NC STATE JNIVERSITY





□ The number of non-zero elements of *K* is decreased from 2500 to 924.q

Conclusion

- We design algorithms with convergence guarantees to find sparse optimal controllers that are delay stable.
- As part of future work, we expand the idea to real world multi-user system where each user is dynamically decoupled from each other and share a common cloud-based communication network.

References

N Negi and A Chakrabortty. ACC 2018. " Sparse Optimal Control of LTI Systems under Sparsity-Dependent Delays".