FREEDIN SYSTEMS CENTER

Dynamic Wireless Charging for Electric Vehicles: Approaches for Reflexive Field Containment Using Reactive Components

NCSU Invention Disclosure: 18-084

Alireza Dayerizadeh

Principle Investigator: Dr. Srdjan Lukić

FREE DYN SYSTEMS CENTER Dynamic Wireless Power Transfer

Wireless Power Transfer: An Alternative to Conductive Charging.

• Source to load efficiencies of over 90% are possible at coupling coefficients of 0.2.

Why Dynamic Wireless Power Transfer?

- Increased range and reduced charging times.
- Reduced vehicle energy storage requirements

Electric-vehiclenews.com. (2018). UK To Test Dynamic Wireless Charging For Electric Cars. [online] Available at: http://www.electric-vehiclenews.com/2015/08/uk-to-test-dynamic-wireless-charging.html

Dynamic Wireless Power Transfer

Dynamic WPT may be accomplished through an array of segmented transmitting coils that sequentially couple to a passing receiving coil, thus isolating the field emissions to the coupled coil. Challenges include:

• Precise Receiver Position Feedback is required.

SYSTEMS CENTER

• Efficient and fast methodology to selectively energize coupled coil.

Dynamic Approach One

Position sensor and relays for power flow control to coupled coils.

FREEMS CENTER

Dynamic Approach Two

Power each coil with a dedicated inverter (cost prohibitive in large applications).

FREEMS CENTER

Dynamic Approach Two

Exploit reflected impedance of receiving coil to control emitted field reflexively

SYSTEMS CENTER

Reflexive Field Containment Approach

When Uncoupled...

Large uncompensated reactance In uncoupled TX coils

When Coupled...

- Reflected reactance brings TX coil into resonance
- Current flow is boosted

Allows for Segmented TX Coils

FREECH SYSTEMS CENTER

Transmitter Design

8

Improving Field Containment

The Saturable inductor:

SYSTEMS CENTER

- Maximizes the difference between coupled and uncoupled currents in the TX coil.
- Saturates as the system becomes coupled.
- Improves system current gain (and field attenuation performance).

FREEMS CENTER

Simulation – Comparison to **Reference System**

× 1e-2

8.390 × 1e-2

Reference System

Current gain 11

Current gain 3

11

FREEN:

Hardware Validation

Transmitter (TX)*	
$L_{ ho}$	190 <i>uH</i>
C_{p}	22.65nF
L _{max}	180uH
L_{eff}	23uH
C _{sat}	143nF

Receiver System	
L _s	237 <i>u</i> H
C ₁	16.56 <i>nF</i>
C ₂	82.81 <i>nF</i>
n	6
R _{Load}	7.5

Input Voltage	171.1 V
Input Current	8.65 A
Input Power	1480 W
Output Power	1208.4 W (95.2^2/7.5)
Efficiency	81.6%
Current Gain	11.1

Conclusion

- Entirely passive field containment approach for the dynamic charging of electric vehicles.
- Builds upon previously published work.

Impacts

- Aid in the proliferation of electric vehicles.
- Aids in the meeting of field emissions standards.
- Technology may be used in: autonomous vehicles and consumer electronics.