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Wireless Power Transfer: An Alternative to Conductive Charging.
» Source to load efficiencies of over 90% are possible at coupling coefficients of 0.2.
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Why Dynamic Wireless Power Transfer?
* Increased range and reduced charging times.
« Reduced vehicle energy storage requirements

Electric-vehiclenews.com. (2018). UK To Test Dynamic Wireless Charging For Electric Cars. [online] Available at:
http://www.electric-vehiclenews.com/2015/08/uk-to-test-dynamic-wireless-charging.htmi
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Receiver Coil

Road Embedded Transmitter Coils

Dynamic WPT may be accomplished through an array of segmented transmitting coils
that sequentially couple to a passing receiving coil, thus isolating the field emissions to
the coupled coil. Challenges include:

* Precise Receiver Position Feedback is required.
- Efficient and fast methodology to selectively energize coupled coil.
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Position sensor and relays for power flow control
to coupled coills.
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Dynamic Approach Two
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Power each coil with a dedicated inverter (cost
prohibitive in large applications).
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Exploit reflected impedance of receiving coil to
control emitted field reflexively
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Reflected reactance brings
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Allows for Segmented TX Coils
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Saturable Inductor
increases reactance
in TX coil.

The Saturable inductor:

« Maximizes the difference between
coupled and uncoupled currents in
the TX caoil.

« Saturates as the system becomes
coupled.

« Improves system current gain (and
field attenuation performance).
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Simulation — Comparison to

System With Saturable Inductor
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Conclusion

« Entirely passive field containment approach for the
dynamic charging of electric vehicles.
* Builds upon previously published work.

Impacts

 Aid in the proliferation of electric vehicles.
 Aids in the meeting of field emissions standards.

« Technology may be used in: autonomous vehicles and
consumer electronics.
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