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Abstract—DC microgrids have higher efficiency, reliability and
lower costs compared to the AC systems due to linking DC
loads to the DC sources and reducing conversion stages. Thus,
they are gaining more and more popularity and the interest
in DC microgrids is increasing. In this paper, we are deriving
mathematical model of a DC microgrid consisting of photovoltaic
(PV) arrays, Battery Energy Storage Systems (BESS) and grid-
tied converter, employing distributed control algorithm. The core
structure of this work is mathematical modeling of all converters
in the discussed microgrid with their voltage, current and droop
controllers. Then, the stability analysis for the system and its
control algorithm is performed to ensure the stability of DC
microgrid in all operating modes. Finally, MATLAB/Simulink is
used for demonstrating the capability of the mathematical model
in modeling the DC microgrid and its control algorithm.

Index Terms—DC Microgrid, Distributed Control Algorithm,
Power Balancing, Droop Control Method, Stability Analysis,
State Space Modeling.

I. INTRODUCTION

Renewable-based sources can be connected to the grid

through power electronic converters or to be combined with

local loads and BESS to form an independent power system

(microgrid) [1]. While remarkable progress has been made in

improving the performance of AC microgrids, DC microgrids

have also been recognized as an attractive option for many

applications because of their higher efficiency, higher reliabil-

ity, improved stability, more natural interface to many types

of renewable energy sources and energy storage systems, and

better compliance with modern consumer loads [2] - [5].

One of the challenges associated with employing DC micro-

grids, is to implement a reliable control algorithm that ensures

all the power converters maintain stable DC bus voltage and

power sharing is achieved among them [6].

To address the mentioned challenge, various droop based

control methods have been proposed [7]. Voltage droop control

method is a well known method in DC microgrids, where the

reference voltage of each source is calculated using its nominal

output voltage, output current and a droop coefficient. In a

parallel system utilizing droop controller, the output power of

each source is proportional to its droop coefficient [2].

In this method, the stability is commonly obtained by sources

in parallel controlling the bus voltage cooperatively. Therefore,

it is necessary to have an accurate model of the system,

including the converters and the control algorithm, for stability
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Fig. 1: Schematic of a typical DC microgrid.

analysis when designing the controller. The core structure of

this work is deriving mathematical model of all the converters

and their controllers in the microgrid shown in Fig. 1. Then,

to use this model for the stability analysis of DC microgrid.

In order to model the DC microgrid with all sources and

their converters, the state space model is utilized. The state

space description is a well known method for describing

a system in terms of mathematical model. As the system

has multiple modes of operation, the mathematical model

is derived for each mode and the stability is examined by

observing eigenvalues of the model.

The remainder of this paper is organized as following. Sec-

tion II explains the distributed control algorithm employed

in the DC microgrid. This control algorithm will be used

for the model derivation in the next section. In section III,

mathematical models of the system are derived and discussed

for different operation modes. Next, in section IV, stability

analysis is performed to ensure the stability of the system in

all operating modes. Simulation of the model is done in MAT-

LAB/Simulink in Section V for demonstrating the capability

of the mathematical model in modeling the DC microgrid and

its control algorithm. Finally, section VI concludes the paper.
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II. EMPLOYED CONTROL ALGORITHM

The control algorithm employed for the microgrid shown in

Fig. 1 is similar to what authors proposed in [2]. The basis

of the control platform is to achieve stability by paralleling

voltage sources on the DC bus.

It is specified that each source is able to regulate the voltage

at its output. Each source is designed with the knowledge of

its topology, switches, power source, and output capacitance

such that it is stable under any external load fluctuations within

the limits of its power rating. It is a ’slack’ source, similar to

slack generators in power systems, in that it provides whatever

power is necessary to ensure power balance and maintain the

bus voltage. As a system expands to include multiple sources,

the system is stable as long as each source is stable.

Fig. 2 shows the I-V characteristics of the slack sources of the

system and how the global system voltage is determined by

the balance of load and supply. Each converter in the system,

measures the DC bus voltage and sets its mode accordingly.

The voltage levels are defined as following







Vmin = 365v

VL = 372.5v

VU = 387.5v

Vmax = 395v

(1)

As it can be seen in Fig. 2, there are two modes of operation

for the DC microgrid based on the DC bus voltage. The

following explains these two modes in details.

Mode I ( VL < Vdc < VU ): In this mode, all three voltage

sources (BESSs and grid-tied converter) are operating in

droop control mode. In the other words, all three converters

are contributing in voltage regulation. However, the droop

coefficient of BESS are set higher than the grid-tied converter

so the majority of power comes from the grid-tied converter.

Meaning that the grid-tied converter is the primary source

responsible for regulating the DC bus voltage and BESS are

the backup sources.







VL < Vdc < VU :

V ∗

Grid = 380−RdG ∗ IG

V ∗

BESS = 380− 1.5 ∗ IB

RdG = 15

260

(2)

where, RdG is the droop coefficient of the grid-tied converter.

As it can be seen, in this mode, droop coefficients for BESSs

are considered 30 times of the grid-tied converter droop

coefficient.

Mode II (Vdc > VU or Vdc < VL): In this mode, grid-tied

converter is operating in current control mode and acts

as a current source/sink. This happens when the grid-tied

converter cannot meet the demand and voltage falls out of

the dead-band (Vdc > VU or Vdc < VL). BESSs remain in

droop control mode and update their droop coefficient to a

lower amount so they can operate as the slack terminals.







Vdc > VU : V ∗

BESS = 387.5−RdB ∗ IB

Vdc < VL : V ∗

BESS = 372.5−RdB ∗ IB

RdB = 7.5
65

(3)

where, RdB is the droop coefficient of BESS.

As it can be seen, in this mode, droop coefficients for BESSs

are considered less than Mode I.

It should be mentioned that in all above expressions, currents

injected to the DC bus are considered as positive and the

currents drawn from the microgrid are considered negative.

The outer control layer (droop control) discussed above,

handles the energy management in the microgrid. However,

there shall be inner voltage and current control layers to

ensure stability of the individual converters in the transients.

Block diagram of a given converter and its all control layers

including: droop controller, voltage and current controllers

are shown in Fig. 3.

In modeling the sources with their controllers, the battery

converters are considered as bi-directional buck converters

and the grid-tied converter is assumed to be a double stage

converter (a two-level voltage source inverter in series with

a bi-directional converter). The first stage of the grid-tied

converter, voltage source inverter (VSI), considered to be fast

enough so that the internal DC bus voltage of the converter,

the input voltage of the second stage, is kept constant.

With these assumptions, both of the grid-tied converter and

BESS are modeled as the bi-directional buck converters. And

therefore, their controllers are designed similarly.

Moreover, PV arrays are considered to operate in Maximum

Power Point Tracking (MPPT) and can be considered a

variable current source. In the same manner, loads can be

considered as variable current sink.

III. MATHEMATICAL MODEL

Fig. 3 shows the average model of the buck converter and

its controllers. As it can be seen from this figure, the voltage

and current controllers are considered as PI controllers. Using

this figure, we can obtain the mathematical model of the DC

microgrid. As mentioned earlier, the PV arrays work at MPPT

so they are considered as variable current sources and loads

are considered as variable current sinks. Thus, the control

algorithm discussed in the previous section is utilized only

for BESSs and grid-tied converter, i.e. the ’slack’ terminals.



Fig. 3: Control block diagram of a single converter.

TABLE I: States definition for the voltage sources of the

system.

State Variable Description

xn1 Inductor Current of nth converter
x12 Output Capacitor Voltage of first converter
xn3 Output of the Voltage Controller Intergrator
xn4 Output of the Current Controller Intergrator

In this section, state space modeling method is used to model

the DC microgrid. The state space description is a well known

method for describing a system in terms of mathematical

model. As the system has multiple modes of operation, the

mathematical model shall be derived for each modes of

operation and the stability in each mode shall be discussed.

First step in state space modeling is defining the state

variables. We can define the state variables as in Table I. Also,

these state variables are shown in the block diagram of Fig.

3.

By considering state space model and examining the eigenval-

ues of matrix A, one can find if the system is stable or not.

First, the mathematical model for Mode I is derived in which

all the converters operate in droop control mode. Then, this

general model will be used for obtainig the model for Mode

II.

For a single converter operating in droop control mode, the

following equations can be obtained from Fig. 3, with the

states defined in Table I.

˙x13 = Vnom −Rd1
x11 − x12 (4)

where, Rd1
is the droop control coefficient for the first

converter and Vnom is the nominal voltage of the converter.

Then, ˙x14 can be described as following

˙x14 = kPv1
[Vnom −Rd1x11 − x12] + kIv1

x13 − x11

= (−1− kPv1
Rd1)x11 − kPv1

x12 + kIv1
x13 + kPv1

Vnom

(5)

where, kPv1
and kIv1

are the proportional and integral gains

for the voltage controller, respectively. Duty cylce D can be

written as

D = (−kPi1
− kPi1

kPv1
Rd1)x11 − kPi1

kPv1
x12

+ kPi1
kIv1

x13 + kIi1x14 + kPi1
kPv1

Vnom

(6)

where, kPi1
and kIi1 are the proportional and integral gains

for the current controller, respectively.

From the average model of buck converter, x11 is related to

D as following

˙x11 = −

1

L
x12 +

D

L
+

1

L
x12 =

D

L
(7)

By inserting the obtained D into the Eq. 7

˙x11 =
−kPi1

− kPi1
kPv1

Rd1

L1

x11 +
−kPi1

kPv1

L1

x12

+
kPi1

kIv1

L1

x13 +
kIi1

L1

x14 +
kPi1

kPv1

L1

Vnom

(8)

˙x12 indicates the derivative of output voltage and can be found

from the following equation.

˙x12 =
1

C1

(x11)−
1

RC1

x12 (9)

where, C1 is the output capacitor of the first converter.

From Eq. 4 to Eq. 12, the state space model of a single

converter and its controllers can be written as







˙x11

˙x12

˙x13

˙x14






=







−kPi1
−kPi1

kPv1
Rd1

L1

−kPi1
kPv1

L1

kPi1
kIv1

L1

kIi1

L1

1

C1

−1

RC1

0 0

−Rd1 −1 0 0
−1− kPv1

Rd1 −kPv1
kIv1

0







︸ ︷︷ ︸

A

+







Vin1

L1

(kPi1
kPv1

)

0
1

kPv1







︸ ︷︷ ︸

B

Vnom

(10)

This state space model is for the case that the output current

of the converter, ILn is positive. Meaning that the load is

greater than PV (under generation).

In order to demonstrate the effect of PV over generation in the

modeling, the feedback current in Fig. 3, ILn, can be written

as Iload−Ipv . By doing this, the state space model of converter



TABLE II: Specifications of the DC Microgrid.

Component Power Rating Max Current Nominal Output Voltage Output LC Filter Switching Frequency

Grid-Tied Converter 60kW 130(A) 380Vdc L = 5mH,C = 500µF 20kHz

BESS Units (each) 30kW 65(A) 380Vdc L = 5mH,C = 500µF 20kHz

PV Arrays 80kW 220(A) 380Vdc L = 5mH,C = 500µF 20kHz

Load 50kW 137(A) 380Vdc L = 5mH,C = 500µF 20kHz

can be rewritten as






˙x11

˙x12

˙x13

˙x14






=







−kPi1
−kPi1

kPv1
Rd1

L1

−kPi1
kPv1

L1

kPi1
kIv1

L1

kIi1

L1

1

C1

−1

RC1

0 0

−Rd1 −1 0 0
−1− kPv1

Rd1 −kPv1
kIv1

0







︸ ︷︷ ︸

A

+







Vin1

L1

(kPi1
kPv1

)

0
1

kPv1







︸ ︷︷ ︸

B1

Vnom −







−kPi1
−kPi1

kPv1
Rd1

L1

1

C1

−Rd1

−1− kPv1
Rd1







︸ ︷︷ ︸

B2

Ipv

(11)

It can be seen that matrix A remains unchanged for positive

and negative currents. Thus, it can be said that the stability

of the system is independant of PV generation. Therefore, the

PV over generation is not considered in the modeling.

The obtained model of a single converter can be used for a

DC microgrid with multiple voltage sources in parallel. Table

I shows the state variables of a microgrid with n parallel

converters. It can be seen that x12, the output voltage of

first converter, is the common state. Meaning that the output

voltages of all paralleled converters are equal and there is no

need to define this state for the other converters.

Using the state space description of single compensated con-

verter, the model of DC microgrid with three voltage sources

operating in Mode I can be obtained. All the state variables

are independent except the common state which can be written

as

˙x12 =
1

C1 + C2 + C3

(x11 + x21 + x31)−
1

R(C1 + C2 + C3)
x12

(12)

where, C1, C2 and C3 are the output capacitors of the first,

second and third converter, respectively.

The state space model of the DC microgrid in Mode I of is

shown in the Appendix.

Using the general mode of Mode I, the state space model for

Mode II of operation can be obtained. Model of DC microgrid

in this mode is shown in Appendix.

Matrix A of the derived state space models can be used to

evaluate the stability of the system.

IV. STABILITY ANALYSIS

The stability of system can be determined by examining

the eigenvalues of the state transition matrix (A matrix). The

system is asymptotically stable if all the eigenvalues of the

transition matrix are negative. In an asymptotically stable
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Fig. 4: Real and Imaginary parts of eigenvalues for Mode I

and Mode II.

system, the system will always return to an equilibrium. The

models developed for the DC system in different operation

modes in the previous section, are used for stability analysis

of the DC microgrids with the specifications shown in Table

II. And the eigenvalues of the system are plotted in Fig. 4 for

two specific operation points. Fig. 4 shows real and imaginary

parts of eigenvalues for two specific operation points. As it can

be seen, all of the eigenvalues have negative real parts, which

means the system is stable.

Results shown in Fig. 4 are for two specific operating points.

In order to prove the stability for all loading conditions,

we should monitor the eigenvalues with the change of load

power. Moreover, it is necessary to find the stable region with

respect to the controller response times. For this purpose,

different loading conditions and different voltage controller

response time are considered. Then, the real part of dominant

eigenvalues of the system are plotted. The stable/unstable

operating regions of the system are shown in Fig. 5.

It should be noted that the current controller response time

shall be faster than the response time of the voltage controller

for stability. Thus, in this simulations, the response time of the

current controller is considered at least 5 times of the response

time of voltage controller.

In Fig. 5, the red dots show positive poles and unstable regions

of the system in mode I and II. By observing the figure, we find

that in order to have a stable system for all loading operations,

appropriate response time for the voltage controller should be

considered.
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Fig. 5: Stable/unstable operating regions in different loading

conditions and different voltage controller response times.

V. SIMULATION RESULTS

In order to demonstrate the capability of the mathematical

model in modeling the DC microgrid and its control algorithm,

the derived state space model of the DC microgrid is simulated

in MATLAB/Simulink. Simulation results for Mode I and

Mode II are summarized in Fig. 6a and 6b, respectively. As

it can be seen in Fig 6a, in Mode I of operation the grid-tied

converter is regulating the DC bus voltage by providing the

required power and BESSs are at stand by due to the difference

between their droop coefficients.

The same analysis can be done for the results shown in Fig.

6b. In this figure, for Mode II, the BESSs are regulating the

DC bus voltage by providing the required power and grid-tied

converter is at stand by. The results of the simulation show that

the mathematical model is capable to model the DC microgrid

and its controller.

Moreover, in Fig. 6c, we can see that the DC bus voltage

remains in the desired range of output voltage as defined in

Eq. 1.

(a)

(b)

(c)

Fig. 6: (a) Output power of BESS and grid-tied inverter in

Mode I. (b) Output power of BESS and grid-tied inverter in

Mode II. (c) DC bus voltage.

VI. CONCLUSION

DC microgrids have higher efficiency, reliability and lower

costs compared to the AC systems due to linking DC loads to

the DC sources and reducing conversion stages. Thus, they



are gaining more and more popularity. In this paper, the

mathematical models of all converters in the DC microgrid

with their voltage, current and droop controllers has been

derived. Then, the stability analysis for the system and its

control algorithm is performed to ensure the stability of DC

microgrid in all operating modes. Finally, MATLAB/Simulink

is used for demonstrating the capability of the mathematical

model in modeling the DC microgrid and its control algorithm.
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VII. APPENDIX

Model of the system in Mode I:



















˙x11

˙x12

˙x13

˙x14

˙x21

˙x23

˙x24

˙x31

˙x33

˙x34



















=



















a11 a12 a13 a14 0 0 0 0 0 0
a21 a22 0 0 a25 0 0 a28 0 0

−Rd1 −1 0 0 0 0 0 0 0 0
a41 a42 a43 0 0 0 0 0 0 0
0 a52 0 0 a55 a56 a57 0 0 0
0 −1 0 0 −Rd2 0 0 0 0 0
0 a72 0 0 a75 a76 0 0 0 0
0 a82 0 0 0 0 0 a88 a89 a810

0 −1 0 0 0 0 0 −Rd3 0 0
0 a102 0 0 0 0 0 a108 a109 0





































x11

x12

x13

x14

x21

x23

x24

x31

x33

x34



















+




















kPi1
kPv1

L1

0
1

kPv1

kPi2
kPv2

L2

1
kPv2

kPi3
kPv3

L3

1
kPv3




















Vnom (13)

a11 =
−kPi1

− kPi1
kPv1

Rd1

L1

a12 =
−kPi1

kPv1

L1

a13 =
kPi1

kIv1

L1

a14 =
kIi1

L1

a21 =
1

C1 + C2 + C3

a22 =
−1

R(C1 + C2 + C3)

a25 = a28 =
1

C1 + C2 + C3

a41 = −1− kPv1
Rd1 a42 = −kPv1

a43 = kIv1
a52 =

−kPi2
kPv2

L2

a55 =
−kPi2

− kPi2
kPv2

Rd2

L2

a56 =
kPi2

kIv2

L2

a57 =
kIi2

L2

a72 = −kPv2

a75 = −1− kPv2
Rd2 a76 = kIv2

a82 =
−kPi3

kPv3

L3

a88 =
−kPi3

− kPi3
kPv3

Rd3

L3

a89 =
kPi3

kIv3

L3

a810 =
kIi3

L3

a102 = −kPv3
a108 = −1− kPv3

Rd3 a109 = kIv3

Model of the system in Mode II:
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

b11 b12 b13 0 0 0 0 0 0
b21 b22 0 b24 0 0 b27 0 0
−1 0 0 0 0 0 0 0 0
0 b42 0 b44 b45 b46 0 0 0
0 −1 0 −Rd2 0 0 0 0 0
0 b62 0 b64 b65 0 0 0 0
0 b72 0 0 0 0 b77 b78 b79

0 −1 0 0 0 0 −Rd3 0 0
0 b92 0 0 0 0 b97 b98 0
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Vnom (14)

b11 = −

kPi1

L1

b12 = 0 b13 =
kIi1

L1

b21 =
1

C1 + C2 + C3

b22 =
−1

R(C1 + C2 + C3)
b24 =

1

C1 + C2 + C3

b27 =
1

C1 + C2 + C3

b42 =
−kPi2

kPv2

L2

b44 =
−kPi2

− kPi2
kPv2

Rd2

L2

b45 =
kPi2

kIv2

L2

b46 =
kIi2

L2

b62 = −kPv2

b64 = −1− kPv2
Rd2 b65 = kIv2

b72 =
−kPi3

kPv3

L3

b77 =
−kPi3

− kPi3
kPv3

Rd3

L3

b78 =
kPi3

kIv3

L3

b79 =
kIi3

L3

b92 = −kPv3
b97 = −1− kPv3

Rd3 b98 = kIv3


