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Abstract—The Dyna-C ac-dc converter is a current-source-
based topology featuring medium-frequency galvanic isolation.
This paper presents the state-space based average and small
signal modeling of Dyna-C ac-dc converter. A space vector based
modulation strategy is developed, presented and validated by
simulation. Based on the proposed small signal model for Dyna-
C ac-dc converter, a two stage closed loop control approach is
developed. The proposed approach comprises of an outer loop
to regulate the transformer magnetizing-current and an inner
dq-based vector control strategy for regulating the grid currents.
Circuit simulation results are presented to validate the proposed
models and the closed loop control scheme for the Dyna-C ac-dc
converter.

Index Terms—ac-dc conversion, controller design, current-
source converters, Dyna-C converter, small-signal modeling, vector
control.

I. DYNA-C CONVERTER

The Dyna-C converter [1], as shown in Fig. 1, consists of a

current-source-based three-phase (3-φ) front-end converter, a

medium-frequency single-phase flyback type transformer and

a current-source-based H-bridge converter. Both, the front-

end and H-bridge converters are realized using two-quadrant

switches that conduct current in only one direction, but block

voltages in both directions. This topology, capable of perform-

ing ac-dc power conversion, can handle bidirectional power

flow. Current-source-based ac-dc converters are inherently

buck rectifiers. Hence, compared to a voltage-source converter

(VSC) based approach, a bulky line-frequency transformer or

an additional dc-dc converter stage can be omitted to step

down the grid voltage. This inherent buck characteristic of a

current-source-based grid connected front-end of the Dyna-

C converter ensures that the dc-link voltage applied to the

magnetizing inductance Lm of the transformer is always less or

equal to the line-to-line grid-voltage. Thus, the dc-link voltage

of a Dyna-C is lower compared to that of a voltage-source-

based active rectifier, which in turn results in lower insulation

requirements for the dc-link. Another advantage of the current-

source characteristic of the Dyna-C converter is its inherent

short circuit handling capability. An accidental short circuit in

a bridge leg does not affect the functionality of the converter,

as the magnetizing inductance prevents the short circuit current

from rising to destructive values. On the other hand, current-

source-based converters are expected to have high reverse

recovery and conduction losses due to the series connected

diodes. In current-source-based converter systems, it is hard

to achieve efficiency parity with conventional semiconductors

based on Silicon (Si) semiconductor technology. However,

with recent advances in Silicon Carbide (SiC) technology, it

is possible to reduce the diode recovery losses in current-

source converters [2] which will make current-source converter

based systems competitive in efficiency to its voltage-source-

based counterparts. Based on these considerations, the Dyna-

C converter is a promising topology that enables reliable

grid-connected ac-dc buck rectifiers with medium-frequency

galvanic isolation for lower costs. A Dyna-C ac-ac converter

is proposed in [1] as a 50 kVA three-phase solid-state trans-

former (SST) and as minimal topology for a bidirectional

(SST) in [3]. Additional it can be utilized as a converter for

instantaneous reactive power compensation [4]. In this paper,

a detailed modulation scheme, a small-signal model and a

closed-loop control scheme are presented and validated for

a Dyna-C ac-dc converter. The paper is organized as follows.

Section II discusses the modulation scheme for Dyna-C ac-

dc converter. The state-space based average and small-signal

models of Dyna-C converter are derived in Section III. Closed

loop controller design considerations for the Dyna-C ac-dc

converter are discussed in Section IV. The presented models

and control strategy are validated through a comparission of

switching and small singal model simulations in Section V.

II. MODULATION SCHEME FOR DYNA-C CONVERTER

A Dyna-C converter modulation scheme is derived by a

detailed analysis of its bridges switching states. In general a

Dyna-C converter is operated like a flyback converter where

the magnetizing inductor is first energized using the (3-φ)

front-end bridge and then discharged by the H-bridge. The

modulation scheme is based on three switching modes m1,

m2 and m3, which are applied for a fraction of the swiching

period Ts, defined by duty cycles d1, d2 and d3.

Ts = (d1 + d2 + d3)Ts (1)
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Fig. 1: Dyna-C topology with LC filter and transformer winding resistance

During modes m1 and m2, line-to-line voltages are applied

across the magnetizing inductance, Lm as shown in Fig. 2a

and 3a. In mode m1 and m2, the output dc voltage-source

Vout is disconnected from the transformer as the H-bridge at

the secondary side is not switched. In mode m3, however, the

3-φ current-source front-end at the input is turned off.
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Fig. 2: Switching mode m1 in sector 1

Vout is now connected to the transformer’s secondary side

using the H-bridge, so that it demagnetizes Lm. This behavior

can be represented by the voltage-source in Fig. 4a. The three

modes m1, m2 and m3 are applied to control the magnetizing

current iLm
of the transformer [5]. The voltage pattern applied

across Lm and the magnetizing current, iLm
during the three

operating modes are given in Fig. 2a to 4b. To develop

a modulation scheme for a Dyna-C converter similar to a

voltage-source converter [6], the fundamental cycle is divided

into six sectors as in a typical current-source converter [5].

These sectors are defined in Table I and illustrated in Fig. 5.

The individual sectors are placed according to the maximum

absolute phase voltage of the grid, which results in an even

division of the fundamental time period into 6 equal areas

shown in Fig.5. The switching modes m1, m2 and m3 given
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Fig. 3: Switching mode m2 in sector 1

in Fig. 2a to 4b are valid in sector 1. For this sector according

to [7] and [5] the duty cycles can be calculated by

d1 = mindcos(θ +
π

6
) (2)

d2 = mindcos(θ − π

2
) (3)

d3 = 1− (d1 + d2) (4)

where mind is the modulation index which is calculated by a

fraction of absolute converter current icv
d and icv

q in dq frame,

divided by the magnetizing current iLm
and given by

mind =

√
(icv

d )2 + (icv
q )2

iLm

(5)

III. MODELING OF DYNA-C CONVERTER

A LC input filter, consisting of a capacitor and an induc-

tance including its internal resistance, is used as depicted in

Fig. 1 to limit the total harmonic distortion of the grid current.

Further, the transformer winding resistances, Rp
dc and Rs

dc on
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TABLE I: Definition of the six sectors in a fundamental cycle.

Switching Sector Voltages

Sec1 v
g
ab(t) = max(|vg

ab(t), v
g
bc(t), v

g
ca(t)|)

Sec2 −v
g
ca(t) = max(|vg

ab(t), v
g
bc(t), v

g
ca(t)|)

Sec3 v
g
bc(t) = max(|vg

ab(t), v
g
bc(t), v

g
ca(t)|)

Sec4 −v
g
ab(t) = max(|vg

ab(t), v
g
bc(t), v

g
ca(t)|)

Sec5 v
g
ca(t) = max(|vg

ab(t), v
g
bc(t), v

g
ca(t)|)

Sec6 −v
g
bc(t) = max(|vg

ab(t), v
g
bc(t), v

g
ca(t)|)
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Fig. 5: Modulation scheme - sector definition.

the primary and secondary side of the transformer are also

shown in Fig. 1. A balanced three-phase system is assumed

for the analysis. The LC-filter parameters in Fig. 1 are set

to the same value R, C and L for each phase. To derive

an average model for the Dyna-C converter, the state-space

averaging method is used [7], [8], where the state-space model

for each switching mode introduced in the previous section are

derived. The general space state model is calculated by

dx(t)

dt
= Ax(t) +Bu(t) (6)

The state-space matrix A and the input matrix B for the

operating modes m1, m2 and m3 within switching sector 1 are

derived, considering the equivalent circuits given in Fig 2a, 3a

and 4a. Note A and B are denoted by duty cycles d1, d2 and

d3 which correspond to modes m1, m2 and m3 respectively.

The state vector x and input vector u are defined as

xT =
[
iLm

ig
a ig

b vab vbc

]
(7)

uT =
[
Vout

n vg
ab vg

bc

]
(8)

For mode m1 corresponding to sector 1, the following state

matrix, Ad1 and input matrix, Bd1 are obtained

Ad1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Rp
dc

Lm
0 0 − 1

Lm
0

0 −R
L 0 2

3L
1
3L

0 0 −R
L − 1

3L
1
3L

2
C − 1

C
1
C 0 0

− 1
C − 1

C − 2
C 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

Bd1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

0 − 2
3L − 1

3L

0 1
3L − 1

3L

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(10)

During modes m2 and m3, the state matrices Ad2 and Ad3

and input matrices Bd2 and Bd3 are given in (11), (13) and

(12), (14) respectively.

Ad2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Rp
dc

Lm
0 0 − 1

Lm
− 1

Lm

0 −R
L 0 2

3L
1
3L

0 0 −R
L − 1

3L
1
3L

1
C − 1

C
1
C 0 0

1
C − 1

C − 2
C 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

Bd2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

0 − 2
3L − 1

3L

0 1
3L − 1

3L

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(12)

Ad3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Rs’
dc

Lm
0 0 0 0

0 −R
L 0 2

3L
1
3L

0 0 −R
L − 1

3L
1
3L

0 − 1
C

1
C 0 0

0 − 1
C − 2

C 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

Bd3 =

⎡
⎢⎢⎢⎢⎢⎣

1
Lm

0 0

0 − 2
3L − 1

3L

0 1
3L − 1

3L

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(14)

1515



Resistor, Rs’
dc is introduced which is Rs

dc in Fig. 1 referred

to the primary side. Additionally, Rs’
dc = Rp

dc is assumed for

simplicity. The average state space matrix Ā1 and input matrix

B̄1 are then calculated to

Ā1 = Ad1d1 +Ad2d2 +Ad3d3 (15)

B̄1 = Bd1d1 +Bd2d2 +Bd3d3 (16)

The averaged matrices given by (15) and (16) can be trans-

fered into the dq domain by utilizing the dq transformation.

By applying the state-space averaging method and the dq
transformation in sector 1, the averaged state-space model for

sector 1 can be calculated as

Ādq1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Rp
dc

Lm
0 0 − α

Lm

β
Lm

0 −R
L

dθf

2dt
1
4L

√
3

12L

0 − dθf

2dt −R
L −

√
3

12L
1
4L√

3α
2C − 3

4C

√
3

4C 0 dθf

2dt

−
√
3β

2C −
√
3

4C − 3
4C − dθf

2dt 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17)

Bdq1 =

⎡
⎢⎢⎢⎢⎢⎣

d3

Lm
0 0

0 −1
4L −

√
3

12L

0
√
3

12L − 1
4L

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(18)

Further, the duty cycles d1 and d2 in (15) and (16) are replaced

by expressions (2) and (3). Additionally, α and β in (17) and

(18) are given by

α = mindcos(Φ) (19)

β = mindsin(Φ) (20)

where mind is the modulation index intoduced earlier and Φ
is the difference between the angular displacement θf of the

dq reference frame d-axis and the angular displacement θ of

the dq reference ac grid voltage, both to the real axis, which

is illustrated in Fig. 6. As in [8], the same averaged dq state

f

vg
b

vg
a

vg
c

q-axis

d-axis
¯-axis

®-axis

Fig. 6: dq reference frame and gird voltage vg in the complex

plane

matrix and input matrix can be obtained for each of the six

switching sectors which yields

Ādq = Ādq1 = Ādq2 = Ādq3 = Ādq4 = Ādq5 = Ādq6 (21)

B̄dq = B̄dq1 = B̄dq2 = B̄dq3 = B̄dq4 = B̄dq5 = B̄dq6 (22)

Therefore, the averaged state-space model can be formulated

as
dxdq

dt
= Ādqxdq + B̄dqudq (23)

Based on (23), the large and small-signal model can be

calculated as in [8], by intoducing the follwing terms in (23)

xdq = Xdq + x̃dq (24)

udq = Udq + ũdq (25)

Formulas (24) and (25) replace the averaged values by large

and small-signal values. Based on this the large signal model

is defined as

dXdq

dt
= ĀL

dqXdq + B̄L
dqUdq (26)

The large signal state and input matrices, ĀL
dq and B̄L

dq are

calculated to

ĀL
dq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rp
dc

Lm
0 0 − αL

Lm

βL

Lm

0 −R
L

ωg

2
1
4L

√
3

12L

0 −ωg

2 −R
L −

√
3

12L
1
4L√

3αL

2C − 3
4C

√
3

4C 0
ωg

2

−
√
3βL

2C −
√
3

4C − 3
4C −ωg

2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

B̄L
dq =

⎡
⎢⎢⎢⎢⎢⎣

D3

Lm
0 0

0 −1
4L −

√
3

12L

0
√
3

12L − 1
4L

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(28)

The large signal state and input vectors are specified as

XT
dq =

[
ILm

Ig
d Ig

q Vd Vq

]
(29)

UT
dq =

[
Vout

n V g
d V g

q

]
(30)

where ωg = dθf

dt . The terms in (19) and (20) are replaced by

its corresponding large signal values

αL = Mindcos(Φ) (31)

βL = Mindsin(Φ) (32)

The small-signal model is given by

dx̃dq

dt
= ĀS

dqx̃dq + B̄S
dqũdq (33)

Further, the small-signal input matrix B̄S
dq can be split into the

control input matrix B̄S
cont and the disturbance input matrix

D̄S
dist, while the small-signal input vector ũdq can be separated

into the control input vector ũcont and the disturbance input

vector ũdist.

B̄S
dqũdq = B̄S

contũcont + D̄S
distũdist (34)

B̄S
cont, ũcont, D̄

S
dist and ũdist are obtained as follows
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ĀS
dq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Rp
dc

Lm
0 0 − α

Lm

β
Lm

0 −R
L

ωg

2
1
4L

√
3

12L

0 −ωg

2 −R
L −

√
3

12L
1
4L√

3α
2C − 3

4C

√
3

4C 0
ωg

2

−
√
3β

2C −
√
3

4C − 3
4C −ωg

2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(35)

D̄S
dist =

⎡
⎢⎢⎢⎢⎢⎣

D3

Lm
0 0

0 −1
4L −

√
3

12L

0
√
3

12L − 1
4L

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(36)

B̄S
cont =

⎡
⎢⎢⎢⎢⎢⎢⎣

− (cos(Φ)Vd−sin(Φ)Vq)
Lm

αLVd+βLVq

Lm

V
′

out

Lm

0 0 0
0 0 0√

3
2C ILm

cos(Φ) −
√
3ILmβL

2C 0

−
√
3

2C ILm
sin(Φ) −

√
3ILmαL

2C 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(37)

The small-signal state and input vectors are defined as

ũT
cont =

[
m̃ind φ̃ d̃3

]
(38)

ũT
dist =

[
ṽ

′
out ṽg

d ṽg
q

]
(39)

The derived large and small-signal model can be used to derive

a controller topology and to model the dynamic behaviour of

the Dyna-C converter.

IV. CLOSED LOOP CONTROL OF DYNA-C CONVERTER

The objective of a Dyna-C converter control system is to

maintain the magnetizing current iLm
according to its reference

value, while drawing sinusoidal currents from the grid. A

control block diagram can be derived based on the average

state-space model given in (23). As in a current-soucre inverter

a two loop control approach is used [7], consisting of an inner

loop to control the dq grid currents Ig
d and Ig

q and an outer

loop for the magnetizing current ILm
, which are indicated by

the blue boxes in Fig. 7. To develop a controller topology, the

inner loop is considered first. The aim is to obtain a control

scheme with Ig*
d and Ig*

q as reference values. This is the reason

for the second and third row of the state-space model in (27)

and (28) to be choosen in order to derive a controller topology

and rearranged to

Vd = 4L
dIg

d

dt︸ ︷︷ ︸
Deriv.

+4RIg
d − 2LωgI

g
q︸ ︷︷ ︸

Cross coup.

+V g
d +

√
3

3
V g

q −
√
3

3
Vq︸ ︷︷ ︸

Ve

(40)

Vq = 4L
dIg

q

dt︸ ︷︷ ︸
Deriv.

+4RIg
q + 2LωgI

g
d︸ ︷︷ ︸

Cross coup.

+V g
q +

√
3

3
Vd −

√
3

3
V g

d︸ ︷︷ ︸
Vf

(41)

According to [7] the derivative and cross coupling terms in

(40) and (41) can be represented by

Vcd = 4L
dIg

d

dt
− 2LωgI

g
q (42)

Vcq = 4L
dIg

q

dt
+ 2LωgI

g
d (43)

This can be reformulated to

Vcd + jVcq = GPI(s)(Icd + jIcq) (44)

where the controller transfer function in (44) is the modified

PI controller transfer function,

GPI(s) =
(kps+ jω) + kI

s
(45)

to obtain an equivalent voltage to current relation. Decompos-

ing (44) into real and imaginary part and inserting it into (42)

and (43) yields

Vd =
kps+ kI

s
Icd − kpω

s
Icq + 4RIg

d + Ve (46)

Vq =
kps+ kI

s
Icq +

kpω

s
Icd + 4RIg

q + Vf (47)

From (46) and (47) the currents to modulate the duty cycles

are obtained by

Icv
d = ωCVq (48)

Icv
q = −ωCVd (49)

In (48) and (49), steady state is assumed and the grid

current feed forward is neglected. The resulting control block

diagram is depicted in Fig. 7. The duty cycle modulator

depicted in Fig. 7 calculates duty cycles d1 and d2 of

modes m1 and m2 using Icv
d and Icv

q are calculated by

(5). From these duty cycles, the switching signals for

switches in the input bridge (S1i - S6i) and the output

bridge (S1o - S4o) of the Dyna-C are calculated by the ‘sw

signal modulator’ in Fig. 7. To regulate the magnetizing

current, iLm
, an outer control loop is added as shown in Fig. 7.

In order to design controller parameters, the small-signal

model given by (35) - (39) can be utilized to derive the

controller to output transfer functions. The effect of a single

control input on a particular output is considered for deriving

each transfer function. As an example, the effect of control

input ũ1 = m̃ind(t) = ũcont(1, 1) on the output ĩgd is evaluated

to find the corresponding transfer function G11. Therefore,

the first column of (37) given by B̄1 = B̄S
cont(n, 1) where

n ∈ {1, .., 5} is used as the input vector and the output vector

C̄1 is set to

C̄1 =
[
0 1 0 0 0

]
(50)

The simplified state-space equation which can be utilized to

derive this transfer function is given by

dx̃dq

dt
= ĀS

dqx̃dq + B̄1ũ1 (51)

ŷdq = C̄1x̃dq (52)
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These time domain equations are transformed to the frequency

domain to obtain

sX̂dq(s) = ĀS
dqX̂dq(s) + B̄1Û1(s) (53)

Ŷdq(s) = C̄1X̂dq(s) (54)

Rearranging (53) and substituting it in (54) gives

G11(s) =
Îg

d

M̂ind(s)
=

Ŷdq(s)

Û1(s)
= C̄1[sI − ĀS

dq]
−1B̄1 (55)

The capitalized values in (55) represent Laplace domain quan-

tities. To calculate G12 and G13, the input vectors are set to

B̄2 = B̄S
cont(n, 2) and B̄3 = B̄S

cont(n, 3), where n ∈ {1, .., 5}.

The control inputs are chosen to be ũ2 = φ̃(t) = ũcont(2, 1)
and ũ3 = d̃3(t) = ũcont(3, 1) respectively, while the output

vector C̄1 remains the same.

G12(s) =
Îg

d (s)

φ̂(s)
=

Ŷdq(s)

Û2(s)
= C̄1[sI − ĀS

dq]
−1B̄2 (56)

G13(s) =
Îg

d (s)

φ̂(s)
=

Ŷdq(s)

Û3(s)
= C̄1[sI − ĀS

dq]
−1B̄3 (57)

Transfer functions G21(s), G22(s) and G23(s) of current Îg
q

are calculated by setting the output vector to

C̄2 =
[
0 0 1 0 0

]
(58)

Thus, the six transfer functions that relate the control inputs

to the dq currents are given by

G11 =
Îg

d (s)

M̂ind(s)
G12 =

Îg
d (s)

φ̂(s)
G13 =

Îg
d (s)

D̂3(s)
(59)

G21 =
Îg

q (s)

M̂ind(s)
G22 =

Îg
q (s)

φ̂(s)
G23 =

Îg
q (s)

D̂3(s)
(60)

To validate the small-signal model, the follwoing assumptions

are made. The angular displacement of the grid voltage and

reference frame is set to Φ = 0. This is justified because

the grid voltage vg
a has its peak value at t = 0 and the dq

transformation aligns the d axis with voltage vg
a [9], which

is achieved in grid connected converters by a PLL [10].

Further, duty cycles d1, d2 are related to the modulation index

m̃ind as given by (2) and (3), why the dynamics in m̃ind are

coupled to d3, which can be expressed by the other duty

cycles as shown earlier in (4). Under these assumptions the

converter dymanics between m̃ind and the grid currents ĩg
d and

ĩg
q are modeled by G11 and G21. Therefore only those transfer

functions are considered to validate the small-signal model.

Transfer functions G11 and G21 can now be used to design

the inner dq-current controller shown in Fig. 7. The controller

block diagrams for d and q axis are shown in Fig. 8a and 8b,

where G11 and G21 blocks represent the dynamics of Dyna-C

converter.
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(a) d-axis controller block diagram
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(b) q-axis controller block diagram

Fig. 8: Controller block diagrams based on small-signal plant

transfer functions

V. RESULTS AND DISCUSSION

Transfer functions G11 and G21 were calculated using

MATLAB. The steady state values required in the small-signal

state-space matrix (35) and input vector (37) are obtained

from a simulation of the switching model with the controller

shown in Fig. 7. The simulation parameters related to Fig.

1, where it is assumed that R = RLa
= RLb

= RLc
and

L = La = Lb = Lc are listed in Table. II. Note ṽlggrid is the
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line-to-ground grid voltage and the switching period is given

by Ts. The bode plot and pole zero map of transfer function,

TABLE II: Simulation Parameters

Parameter Value Parameter Value

vlgg 277Vrms L 0.2mH

fg 60Hz C 10μ F

Lm 0.8mH R 50mΩ

R
p
dc 15mΩ Vdc 400V

ω11
res 3.5kHz ω21

res 3.5kHz

n 1 Ts 100μs

G11 are given in Fig. 9. As expected in a fifth-order system,

five poles are calculated. For the chosen operating point, it

can be seen that there are two complex conjugate pole pairs

and one real pole. They are all in the left half plane (LHP),

which is fundamental to obtain a stable system. The resonant

frequencies related to the complex conjugate pole pairs are

reflected by two peaks in the bode magnitude plot. The lower

resonance frequeny ω11
res of G11 and ω21

res of G21 are both given

in Table II. The resonance frequencies of G11 are above 3kHz.

G11 further contains three zeros (a complex conjugate pair and

a real zero) which are all in the right half plane (RHP). The

complex conjugate (RHP) zero causes the phase in Fig. 9 to

be at high value of 536 degrees for low frequencies.

TABLE III: Controller Parameters

Parameter Value Parameter Value

K
dq
p 1 Klm

p 1

K
dq
i 30 Klm

i 3

The zeros situated in the RHP underline that the Dyna-C

converter is based on a flyback converter, which has a zero

in the RHP [11] too. Similarly, bode plot and pole zero map

for the transfer function, G21 are shown in Fig. 10. Since the

large signal values matrix elements in (35) remain unchanged

to calculate G21, its eigenvalues and consequently the poles

keep their values as in G11, which can be seen by comparing

Fig. 9 and 10. The real zero location remains unchanged

while the complex conjugate zero pair moves from the RHP

to LHP. The LHP zeros lead to an improvement of the

phase as opposed to G11, where it continuously drops. A PI

controller is designed based on the switching and small-signal

model simulations and the controller parameters are given in

Table. III.

In order to validate the derived models, a step change

was introduced to d axis and q axis current references in Fig.

8a and 8b. This is then compared to the step response from

the switching model controlled by the developed controller

in Fig. 7. First, the d-axis current reference is perturbed by

applying a 24A �→ 34A step to it, while the q-axis current

reference is kept at zero. Simulation results are shown in

Fig. 11. The switching model based d-axis current isw
d is

shown by the blue plot, while the small-signal model based

d-axis current ism
d is given by the red line. The small-signal

model responds faster than the switching model as illustrated

by Fig. 11.
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The same method is applied to the q-axis current reference,

which is perturbed by a 0A �→ 5A step, while ig
d is kept at 24

A. Fig. 12 shows that the small-signal value ism
q deviates from

the switching model current ism
q to a lower extent as compared

to the d-axis current. The differences between the small-

signal and switching model is attributed to the simplifying

assumptions. In Fig. 11 and 12, only the transfer functions G11

and G21 are considered. Moreover, other terms that signify

cross-coupling between the d and q axis currents are neglected.

To demonstrate that the outer controller in Fig. 7 is capable

in controlling the magnetizing current iLm
, its step response is

evaluated as well.
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The reference before the step, is chosen such that ig
d has

the same value as in Fig. 11 and ig
q is set to zero. Simulation

results are displayed in Fig. 13. The response has a slight

overshoot and settles to the reference value in less than 2

seconds. Since the poles are close to the imaginary axis such

a slow respance is espected. The steady state grid current

and voltage waveforms are shown in Fig 14 with the chosen

filtering arrangement and modulation strategy.
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Fig. 13: Step response - magnetizing current.
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Fig. 14: Simulated grid voltage and grid current in a Dyna-

C converter corresponding to steady state unity power factor

operation.

VI. CONCLUSION

In this paper, a modulation scheme and a small-signal

model for the Dyna-C ac-dc converter are proposed. The

modulation scheme is developed based on the current-source

characteristics and flyback nature of the Dyna-C converter. A

state-space based averaging technique is used to derive the

small-signal model, which is then used for designing the two

loop closed-loop control structure of the Dyna-C converter.

Deviations observed between the small-signal model and the

switching model step responses indicate that the proposed

models could be further improved. Simulation results are

presented which validate the functionality of the proposed

modulation and control approach.
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