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Abstract—In this paper, the control and state observer for 
grid connected PWM converter with LCL filter has been 
discussed. The discrete state-space observer is designed in the d-q 
synchronous reference frame. Using the coordinate change of the 
matrix, the alternative state equation, which has diagonal system 
matrix, is obtained. Discretization of alternative state equation 
using Zero-Order Hold method is suggested, and the discrete 
form is simpler than that derived by original system matrix. By 
considering control stability with respect to the relation between 
filter resonant frequency and sampling frequency, current 
control scheme with feedback signal from state observer is also 
proposed. The digital delay to the PWM and sampling is 
considered for digital implementations. 

Keywords—LCL filter, digital observer, discrete time domain, 
control stability, resonant frequency, grid-connected converter. 

I. INTRODUCTION 
In grid-connected power conditioning system (PCS), 

fulfillment for current harmonic restriction is one of the critical 
issues. Accordingly harmonic filters are mainly inserted 
between the grid and PWM converters to reduce harmonic 
components from PWM switching [1]. LCL filters are more 
popularly used in various applications compared to L filters as 
higher inductance, which increases overall filter volume and 
weight, is required for L filters than the case for LCL filters 
[1]-[5]. However, a disadvantage of the LCL filter is the 
resonant behavior, and it could invoke instability of the system. 

To suppress the resonance, passive or active damping 
technique has widely discussed. The resonance can be damped 
by a suitable resistor in passive damping, but the passive 
methods introduce losses in the system [2]. Active damping 
schemes are implemented by modifying the control loop [4]. 
However, in most cases, PCS requires additional sensors to 
implement active damping, and it increases cost and decreases 
system reliability. Some literature show that the digital time 
delay affects the LCL filtered system stability [5]-[7]. 
Appropriate selection of the position of current sensing and the 
ratio of the LCL resonant frequency ( resf ) to sampling 
frequency ( sampf ) allow to operate system in stable without any 
damping technique. In short, if /res sampf f  is lower than 1/6, 
converter-side current should be fed-back for stable operation 

without damping scheme. By contrast, if /res sampf f  is beyond 
1/6, grid current for feedback signal will stabilize the system. 

When using LCL filter, the current sensor for the current 
feedback in control can be placed either at the converter output 
or the filter output. Although the output power of PCS at the 
grid side should be controlled, in some cases, the current 
sensor should be installed at the output of the converter due to 
the package limitation. For small scale power system, shunt 
resistor can be adopted to sense current. For large scale system, 
it is hard to place current sensor at the grid side because the 
LCL filter size is getting larger and the feedback signal path 
from sensor to controller is getting longer and is more sensitive 
to noise. If such system set /res sampf f  beyond 1/6 to reduce 
filter size, the active damping should be adopted and additional 
sensor should be installed. The notch filter based technique 
was also introduced to make phase margin without additional 
sensor, but it should consider frequency deviation from 
nominal value [4]. In [8], a discrete time observer based state-
space current controller could operate system in stable without 
any damping technique although the /res sampf f  was beyond 
1/6, and the converter current was fed-back. However, the 
analytical gain for current control was much more complicated 
than conventional current controller. The active damping based 
on state observer was presented for LCL filter [9] without 
additional sensor. However, because these discrete state 
observer neglects loss component, they suffer from internal 
stability issues. 

This paper presents control scheme based on state observer 
to stably operate LCL filtered system although the converter 
current is fed-back and the /res sampf f  is beyond 1/6. In the 
previous paragraph, it was figured out that additional sensors 
was not mandatory to stabilize the system with unstable 
condition as described in previous literatures. The main 
contribution is adopting conventional synchronous reference 
frame proportional-integral (PI) regulator for current control 
and suggesting less complicate discrete time domain observer 
design. The state observer estimates grid currents, and these 
will be fed-back to controller for stable operation. To simplify 
discretization, the state equation is changed to the alternative 
diagonal system by similar transformation. The proposed 
alternative diagonal system can make system internally stable. 
The observer gains are set in discrete time domain. For the 
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digital implementation, the voltage compensation considering 
digital delay is discussed. 

In Section II, alternative diagonal system equation will be 
presented. This alternative system will be changed to discrete 
system equation using Zero-Order Hold (ZOH). In Section III, 
the observer gains will be set by the direct pole placement in 
discrete time domain. In addition, the control scheme without 
damping technique will be proposed based on conventional 
current regulator and state observer. 

II. ALTERNATIVE DISCRETE STATE EQUATION 

A. Diagonalization 
Fig. 1 (a) shows the system configuration for grid 

connected PCS with LCL filter, and the equivalent circuit can 
be depicted in d-q synchronous reference frame as in Fig. 1 (b). 
Complex space vectors in d-q synchronous coordinates are 
used as in [8] and [9]. In this paper, the grid voltage vector is 
aligned on the q-axis and the q-axis current is defined as an 
active power component [10]. The state equation can be 
represented as (1). 
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In the aforementioned equations, fcR  and fgR  stand for the 
resistance of converter side and grid side filter inductor. fcL  
and fgL  stand for the inductance of filter. fC  stands for the 
filter capacitance. gω  stands for the grid frequency. e

cdqi , e
Cdqv  

and e
gdqi  represent converter side current, filter capacitor 

voltage, and grid side current, respectively. e
idqv  and e

dqe  stand 
for converter output voltage and grid voltage respectively. The 
arrow on variables represents complex vector. 

For implementation in digital signal processor, the system 
has to be discretized using several methods such as Euler’s 
backward, Trapezoidal, or Zero-Order Hold methods, and these 
method maintain stability of the original system [11]. 
However, the inverse or exponential of the original state 
equation, which is essential factor to get stable discrete 
equation, have complex form, and it can be obstacle for 
implementation in practical.  

To alleviate the computational burden, the original state 
equation could be changed to diagonal matrix using similar 
transformation [12], [13]. With lossless assumption, the change 
of coordinate matrix can be obtained as (2) [8]. The state 
equation can be written in alternative state equation as (3) by 
similar transformation with the state change as (4).  
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Fig. 1. (a) System configuration (b) d-q synchronous reference frame equivalent circuit 
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eigenvalue. 

However, the original system with resistor cannot be 
changed to diagonal matrix by (2). In addition, the poles of 
alternative state equation derived with lossless assumption are 
placed in imaginary axis of Laplace domain, and the response 
of the system would be oscillated. This implies the system is 
internally unstable. 

To avoid such oscillatory response in the system, 
asymptote eigenvalues has been proposed. The characteristic 
equation of the original system is represented as (5). 
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where, 1 /LCc fc fL Cω = , 1 /LCg fg fL Cω = , /LRc fc fcR Lω = , 
and /LRg fg fgR Lω = . 

Because the poles by inductors and resistors, LRcω  and 

LRgω , are placed much lower than the poles by inductors and 
capacitor, LCcω  and LCgω , (5) can be simplified to (6). The  
approximated characteristic equation gives the asymptote 
eigenvalues as (7). 
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where, 1 /p p fL Cω = , ||p fc fgL L L= , 

( ),
1
2LR avg LRc LRgω ω ω= + . 

The diagonal elements of the system matrix ( A ) can be 
changed to the value in (7), and this diagonal matrix is valid 
with subtle errors. Fig. 2 shows the transfer function 
comparison of system characteristic equation between original 
system and diagonal system using asymptote eigenvalue. The 
error is negligible, and the asymptote pole can demonstrate the 
system dynamics without oscillations. 

B. Discretization using Zero-Order Hold 
Because the resonant frequency of LCL filter is affected by 

digital implementation, the state model for observer design in 
continuous time is not valid in digital processor. The state 
equation should be digitalized, and the state observer should be 
designed in discrete domain. The system has been discretized 
with the Zero-Order Hold (ZOH) method as (8) [8]-[9], [11]- 
[12]. 

 
Fig. 2. Transfer function of system characteristic equations 
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d =C C , d =D D , sT  stands for sampling time. 

The results in (8) is simpler and more stable than the 
discretized system with ZOH method from original system in 
[8] or [9]. The internal stability and oscillation of discrete 
system of original one will be discussed in Section IV. 

III. OBSERVER AND CONTROLLER DESIGN 

A. Observer design 
The gains of state observer can be calculated in both 

continuous and discrete time domain. The gains in continuous 
domain are presented in Appendix, and these gains should be 
properly transformed to discrete time domain. Instead, direct 
design in the discrete time domain is proposed. The difference 
equation of discrete state observer is given by (9) where 

[ ]1 2 3
T

d d d dL L L=L , and the characteristic polynomial of 
the error dynamics is given by (10). Although the poles can be 
directly selected in z-domain, the poles are selected in s-
domain in advanced for physical insight. One real pole ( oω ) 
and conjugate complex poles ( β  and *β ) have been selected. 
The complex poles represent dynamics of 2 2

2 2 22 o o os sζ ω ω+ + . 
The s-domain poles are translated to the z-domain pole using 

( )exp sz sT=  as (11). 
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The observer gains can be calculated by solving (12). 
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The pole of observer can be placed at a higher frequency 
than the current control dynamics and lower than the Nyquist 
frequency. But it is not necessary to set higher than the filter 
resonant frequency. 

B. Controller design 
As mentioned before, although both converter current and 

grid current can be used for feedback, the resonant frequency 
of LCL filter affects to the stability of the control. If the 
resonant frequency is set over 1/6 and under 1/2 of sampling 
frequency, the grid current control is stable without active 
damping. However, in some case, the current sensor should be 
installed at the output of converter due to the package 
consideration. As a result, the resonant frequency should be set 
under 1/6 of sampling frequency for stable current regulation 
without active damping. But the size of filter should be getting 
larger, or the active damping implementation can increase 
number of sensors. 

In this paper, the grid current estimated by state observer is 
fed back to regulator. The resonant frequency of LCL filter is 
set over 1/6 of sampling frequency with fulfillment for current 
harmonic restrictions. The stable current regulation is satisfied 
and the filter size is getting smaller. Because the resonant 
frequency is designed much larger than current regulation 
dynamics, the LCL filter can be approximated to L filter in the 
view point of current control [1]. The conventional 
synchronous reference frame PI (Proportional and Integral) 
regulator can be adopted and the gains can be set to achieve the 
first order low-pass filter dynamics as (13). The cut-off 
frequency of current controller, ccω , should be set under 1/10 
to 1/6 of observer poles.  

 ( )
,p f sum cc

i fc fg cc

k L

k R R

ω

ω

=

= +
  (13) 

C. Considerations for digital implementation 
The delay due to PWM and digital control used to be 

considered for control loop design, and it affects to the 
observer design. With a proper compensation such as in [14], 
this delay can be effectively compensated. In this case, the 
output of PI controller directly used for state observer input, 
and it is not necessary to change observer gain due to the 
digital delay. The output of controller at time ‘k-1’ becomes 
input of state observer at time ‘k’. 
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The proposed control scheme considering digital 
implementation is depicted in Fig. 3. The estimated grid 
currents of state observer at ‘k-1’ are fed-back to current 
regulator, and the output of controller at ‘k-1’ used for state 
estimation in the next sample period. 

IV. VERIFICATION 

A. Open loop test 
The open loop response of proposed diagonal system has 

been evaluated, and Fig. 4 shows the results. Three systems 
have been tested. 

(a) original state equation in (1) in continuous time domain,  

(b) state equation in [8] or [9] in discrete time domain,  

(c) proposed state equation in discrete time domain. 

The values of system (b) were labeled as ‘estimated 
variable (1)’, and the values of system (b) as ‘estimated 
variable (2)’. 

Input (converter) voltages were set to operate system in 
rated power condition. The input is set to nominal grid voltage 
before applying step input, so both d and q-axis currents were 
kept zero.  At 0.1 s, the d-axis voltage is applied in advance, 
and the q-axis voltage is applied at 0.2 s. System (b) shows 
oscillation after input was applied, but proposed system (c) has 
no oscillation for open loop test and shows the same dynamics 
to the original system. These imply that, in the view point of 
internal stability, proposed diagonal state equation is internal 
stable even in discrete time domain, but the discrete state 
equation with lossless is unstable internally. Although the state 
observer can cancel such unstable poles by unstable zeros and 
the unstable poles seem to disappear form the system, the 
unstable poles still there and can invoke instability. The 
proposed asymptote poles make system internally stable, and 
such problem will not appear. 

B. Closed loop control 
Fig. 5 shows the results of conventional closed loop current 

control with converter current feedback without state observer. 

The current control cut-off frequency is sot to 200 Hz. The 
system can operate stably if the /res sampf f  is under 1/6. In the 
contrast, the /res sampf f  beyond 1/6 made system unstable, and 
the voltages and currents at PCC (point of common coupling) 
were diverged right after PCS started switching operation. 

 
(a) Converter currents 

(b) Filter capacitor voltage 

(c) Grid currents 
Fig. 4. Open loop test results for state equations
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Fig. 3. Proposed control scheme 
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Fig. 6 and 7 shows the result for proposed control scheme, 
and the resonant frequency of LCL filter is same to Fig. 5 (b). 

Although the hardware is identical, proposed scheme can 
stabilize the system without additional sensors as in Fig. 5. Fig. 
6 show the estimated states are well tracking measured states in 
operation. 

V. CONCLUSIONS 
This paper presents control scheme to operate PCS with 

converter current feedback without active damping. LCL filter 
has the resonant frequency beyond 1/6 of sampling frequency, 
and it was known that this condition makes converter current 
feedback system unstable without additional sensors. The 
proposed control scheme was adopted state observer, and the 
estimated currents were fed-back to current regulator. The 
discrete state equation with diagonal system matrix was 
derived by similar transformation and ZOH method. The 
asymptote eigenvalues were proposed for diagonal elements. 
These can make system internally stable, alleviate the 
oscillations in open loop system, and demonstrate the original 
system. The direct discrete observer design was implemented. 

 
(a) fres = 2.5 kHz < 1/6 fsamp 

 
 (b) fres = 4.5 kHz > 1/6 fsamp 

Fig. 5. Closed loop current control test results according to the LCL filter 
resonant frequency 

 
Fig. 6. Closed loop current control test results of proposed control scheme 

(fres = 4.5 kHz > 1/6 fsamp) 

 
(a) Converter currents 

 (b) Filter capacitor voltage 

 
(c) Grid currents 

Fig. 7. State estimation results with closed loop current control 
(fres = 4.5 kHz > 1/6 fsamp) 
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APPENDIX 
The state observer can be set by both continuous and 

discrete time domain. The observer gain matrix, 

1 2 3

T
L L L=L , in continuous time domain is given by 

(A1). The characteristic polynomial of the error dynamics is 
designed as (A2). One real pole and conjugate complex pole 
have been selected. 
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where, ( )( )3 2
0 1 2 2 22o g g o g o oT j jω ω ω ω ω ζ ω= − − + − , 

( )2 2
1 2 1 2 2 2 23 2 2 2 1g o o o o g o oT jω ω ω ζ ω ω ω ζ= − + + − + , 

2 1 2 22 3o o o gT jω ζ ω ω= + − .   

 ( ) ( )( )2 2
1 2 2 2det 2o o o os s s sω ζ ω ω− + = + + +I A LC   (Α2) 
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