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Research Areas

» PV Integration

« Energy Storage

« Electric Power
Distribution System
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« Energy Management
Systems

* Microgrid

 Distribution automation

» Advanced Data Analytics
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« GridWrx lab is currently the home of 15 PhD
students

« We also host undergraduate researchers,
master students, and visiting scholars to
maintain a diversified group.

Dr. Ning Lu
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« Superconducting magnetic energy storage (SMES)
« Super capacitors

* Pumped-hydro power plants (PHP)

« Compressed air energy storage (CAES)

* Flywheels

- Batteries
— NaS (sodium-sulfur), Li-ion, lead acid, flow batteries, etc.
— Electric vehicles

« Thermal energy storage devices
— lce storage, water heaters, air conditioning units, etc.
— Demand response programs using load with thermal storage capabilities

Dr. Ning Lu North Carolina State University
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Direct Storage Indirect Storage

(via 1-way or 2-way energy conversion)
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» Traditional (Energy Markets)

o Backup

o Peak shaving

o Energy shifting

o Arbitrage
» Advanced (Ancillary Services)
- Regulation
o Load following service
o Frequency response
Spinning/non-spinning reserves
Reactive power support
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Intra-hour Applications
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Economic
Dispatch

Balance the mismatches between the load forecast and the actual load

L~ Regulation
Calculated by AGC

Load
followin

10-minute
load forecast

Hourly-ahead Load Forecast

Actual Load
Hour 8 Hour 9

Figure by Craig Taylor and Don DeBerry, presented at 2002 OSIsoft T&D Users Conference
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* Regulation services: balances generation and load in real-time to maintain system frequency and tie-
line power flows at the scheduled values.

« Inputs: Area Control Error(ACE) and Tie-line Flow Deviations.
- Signal resolution: 2-10 seconds
« Characteristics: mostly energy neutral, random in magnitude (very hard to forecast)

NY-ISO ACE signal of June,2017 and its probability density function
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1. Reduce the wear-and-tear of the traditional generators
Advantages 2. Reduce the amount of required regulation capacity
3. Improve the quality of regulation services
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« Energy storage systems have energy limits.

« When regulation signals have significant DC components, energy storage devices will soon
be fully charged/discharged

« Three approaches to deal with this issue
— Design energy-neutral frequency regulation signal
— Design operation strategy to maintain the state-of-charge (SOC) levels
— Allow storage to adjust its committed regulation services in a shorter interval
» The first method has been implemented by PJM and ISO-NE.
« Fast regulation signal: Applying a high-pass filter to the AGC signal.
« Signals with a fast ramping rate but energy neutral.

'I_Lﬁu-.c"’ e, -
i b n;; — — < =3 Regulation
\ 4 High Pass 'Regulation Signal-RegD
v : Controller

LU Filter '
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Monetary Incentives: FERC Order 755 requires the implementation of pay-for-performance
regulation market

Design Considerations: FERC Order 784 requires the improvement of signal design considering the
state of charge constraint of energy storage system 1
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Regulation capacity: participating resource will be rewarded by the bidding
capacity P, , unit: $/MWh. Regulation-up and regulation down signals have the

same power limit except in the CASIO control area

Regulation mileage M: the sum of the absolute values of the regulation control
signal movements, unit $/AMW, P/ Y is the power output of a regulation unit at ¢

reg reg

Performance factor A: A value between 0 and 1, represent the response accuracy
with respect to the regulation instructions. A general penalization format is as

follows:
Payment = bld (pc + AMpy,)

where p., py; are capacity clearing price and mileage clearing price, respectively.
In this analysis, we assume A4 = 1.

Dr. Ning Lu North Carolina State University
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Ee —Eeq = AtUcPtRegDown — AtndPtRegUp — AtPtselfDiSC

Discharged  Charging Self-discharged
energy energy energy

RegDown reg
0<P <P

__pRegUp reg
0<—-pP9"P<p

Lowerlim Upperlim
E < E, < EUPP

Modeling Parameters

ESS Technology Lithium-ion Flywheel
charging efficiency N, 0.85 0.95
discharging efficiency N4 1 0.95
self-discharging rate pet/pise 2-4% per month 2% per month

Dr. Ning Lu North Carolina State University
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 Start-up nor shut-down costs are not considered

« Actual annual revenue for year 2017 is calculated and we assume that the
same revenue Is received over the entire lifetime.

* Revenue includes two payments: mileages and capacity

« Cost includes installation and O&M cost

« NPV (Net Present Value) is calculated assuming the discount rate is 10%

Revenue R = Rmileage + Rcapacity

Cost-of-service C = Cinstanr + Coam

V(i)
1+ 1)t

N
Net Present Value NPV = z (
i=1

PTOfit = NPViepenue — NPV ost

Dr. Ning Lu North Carolina State University
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 Lifetime of a battery storage system can be estimated based on how many
charging/discharging cycles it has completed at different depth of
discharge(DOD)

« Rain-flow algorithm is used for estimating battery lifetime depreciation

* The flywheel lifetime is assumed to be constant

4
><10
Flywheel
Battery High
Battery Low
1.5
n
o
S
o 1
©
o)
e!
5 05
> 05 ¢
0 | | | | | | |
20 30 40 50 60 70 80 90 100

Depth of discharge(%)
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One directional service: Energy storage system only takes “up” signal
when discharging, while only taking “down” signal when charging
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Two directional service: Energy storage system can take both “up” and “down” signal
when possible.
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To evaluate the accuracy of following regulation signals, we calculated response

rate as:

_ Nruirilled

RR X 100%

Ntotal

where nsy;5i1eq 18 the number of regulation signals fully following by the ESS
and n;,:4; 1S the total number of regulation signals.

To evaluate the lifetime depreciation when providing regulation services, we
calculated the aging ratioas:
A=

Ldefault N Lremain

X 100%

Ldefault

where Lgerqq: 1S the default lifetime of battery, L,opmqin is the remaining lifetime
after certain period of service estimated by rain-flow algorithm.

Dr. Ning Lu North Carolina State University
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* Regulation signals and the corresponding price data were downloaded from
PJM and NY-ISO website, the data was collected from January 1, 2017 to
December 31, 2017

« Designed lifetime of Li-ion battery is 10 years, while the designed lifetime of
flywheel is 21 years

« The power and energy rating of Li-ion battery and flywheel is 1MW and 0.5
MWh, respectively

« (Cost Parameters

Li-1on(0.5hr) Li-1on(2hr) Li-ion(4hr) Flywheel
Current
Technology Cost($/kWh) 1650 725 525 4538.32
advancement L2030 Cost ($/kWh) 629 276 200 -
O&M($/Kw-yr) 10 10 10 7

Dr. Ning Lu North Carolina State University
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| PJM RegD PJM RegA NY-ISO
: 1-. : 2-. . 1-. : 2-. . 1-. 2-direction
direction direction direction direction direction
( Aﬁi}l\?z\%v) 133470 263210 20101 35472 87562 156450
Battery 1;;;‘;"‘;:)" 99.94 95.05 99.91 55.7 99.92 85.46
Llist:‘;:};is) 4.72 3.89 5.93 423 5.28 3.99
( ﬁ&ffﬁ% 133810 294480 20291 43100 87140 159290
Flywheel Ié;i‘;;‘;:)e 99.94 94.93 99.90 59.12 99.92 86.26
Liﬁﬁiﬂ“ﬁ;ﬁs) 21 21 21 21 21 21

Regulation signal designh makes a significant difference.
When providing regulation services, battery lifetimes are shortened.
When providing RegD services, battery lifetimes can be further shortened but not by much.
When providing 1-directional services, battery lifetimes can be prolonged.
As the flywheel can cycle as many times at low DOD as at high DODs, its lifetime is not affected by providing
the regulation services.
Dr. Ning Lu North Carolina State University
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A larger size battery has a longer service life.
When supplying RegD, the service life are
3.8, 5.5, 13.5 years for 0.5, 2 and 4 hours
battery, respectively.
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 We have finished the following comparisons

— Regular regulation signals v.s. storage-friendly signals
— 1-directional v.s. 2-directional services

— Regional differences (PJM v.s. NYISO)

— Different battery sizes

— energy storage technologies (Li-ion Battery v.s. Flywheel; lifetime sensitive to DOD w.s. lifetime
not sensitive to DOD)

e What to come

— Market-based v.s. non-market based regulation services
* Need signals from non-market based systems

— Different energy storage control algorithms
* Optimize energy storage operation
e Stack the regulation service with other type of services

Dr. Ning Lu North Carolina State University
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Part 5: Fast Frequency Response Services

Li, Weifeng, Pengwei Du, and Ning Lu. "Design of a New Primary Frequency Control Market for
Hosting Frequency Response Reserve Offers from both Generators and Loads." IEEE
Transactions on Smart Grid (2017).
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Loss of 2750 MW Generation
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Actual System Response
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Primary frequency response is the
only control action that can
oppose the free-fall of frequency
within seconds before involuntary
load shedding takes place.
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Loss of 2750 MW Generation
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More primary frequency response - less frequency drops and faster recovery
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Inertia reflects a synchronous machine’s physical character to slow down the rate of
frequency change.
dif — fo

dt  2HS,

(AP, — AP,)

L 8

~Inertia
f: Rotating frequency of the machine, H: Inertia constant of the synchronous machine
Sg: Rated power of the generator, AP,,: Change in mechanical power
AP,: Change in electric power demand

ERCOT Largest N-2

\

D
o ©
o N

——High Inertia (278 GWs)
Mid Inerita (202 GWs)

Frequency (Hz)

ol ounoun
© 0L o
NoOB Oy 0O

L3 B
o

——Low Inertia (135 GWs)

0 0.5 1 1.5 P

Time (s)
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Loss of 2750MW Generation

60.2
332 GW.s
60 Inertia
59.8

Frequency (Hz)
un un
0 0
B o

/
/

100 GW.s ~
59
58.8 i i i i
100 GW.s Inertia = 119.5 GW.5 Inertia ——— 135.5 GW.s Inertia 152 GW.s Inertia
177 GW.s Inertia —201.5 GW.s Inertia -229.5 GW.s Inertia =———255.5 GW.s Inertia
58.6 — 278 GW.s Inertia — 396.5 GW.5 Inertia 315.5 GW.s Inertia =——332 GW.s Inertia
0 0.5 1 1.5 2 2.5

Time(s)
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® 2015 *2016 *© 2017 1st Quarter

R

-

S

-
en e B2 2 UG 4 00 OF Te 00 09 N1 BRI AT T e MW MU MW 2w

450,000

400,000

350,000

300,000

250,000

Inertia (MW*s)

200,000
150,000

100,000
0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

Hourly Wind Penetration (%)

S s ke |20 4 auaren)

Installed Wind Capacity 16,078 MW 18,564 MW 19,284 MW

*Data Source: ERCOT Operations Data

Dr. Ning Lu North Carolina State University
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FRE

*NERC and **National Labs recognize that large-scale integration of Renewables leads to decline in system inertia,
causing a significant reduction of the primary frequency control (PFC) capability.

Gen Loss : 2750 MW Reserve : 2750 MW

——Frequency Gen —Frequency Gen
60.2 20000 60.2 51000
Low Inertia High Inertia
60 60
- 18000 — 50000
T 59.8 —~ I 598 -
s s 3 Z
L] 2
€ 596 16000 % € 596 49000 i
s § ¢ G
© 59.4 0 59.4
= - = = = = 14000 g Hr | = = = == = = == = = = = 48000
59.2 59.2 1
59 " Involuntary Under Frequency Load Shedding 12000 39 " Involuntary Under Frequency Load Shedding =~ 47000
0 5 10 15 20 0 5 10 15 20

Time (s)

Time (s)

System Dynamic (impacted by

Actual PFR Need # MW Loss ¢ ! ®
" both inertia and PFR) is Crucial

*NERC Frequency Response Initiative, April, 2010
**E. Ela, M. Milligan, B. Kirby, A. Tuchy and D. Brooks, "Alternative approaches for incentivizing the frequency responsive reserve ancillary service,” NREL, March 2012

Dr. Ning Lu North Carolina State University
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From Load/ other resources:
—  Delivered within 30 cycles (0.5 seconds)
—  Triggered by under frequency relay
(59.7Hz)
—  Fast Frequency Response (FFR)

From Generators:

—  Delivered within 12 to 16 seconds
—  From governor response

60.1 17200

60.1 - -~ 3300
60 : - 17000 &0 L 3100
¥ 28 - 16800 =599 - g &0
T sos - - 2700 _
g 16600 § o 59.8 ' =
g 59.7 T 3 - 2500 3
o« 16400 & § %7 | 2200 &
€ 5956 - A -
2 11600 B 8§°F - 2100
& 59.5 z B ]
o “1 585 B
£ 1900
59.4 - 16000 g
= 594 + - i 1700
59.3 . 15800 E
] 59.3 1500
0 2 4 { 2
_ & 0 2 4 6
Time(s) Time(s)
Frequency Mechanical Torque E LAAR
requency s 5
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SYSTEMS CENTER Lab

Loss of 2750 MW Generation

60.100

59.960 T Initial rate of change of frequency

(RoCoF) prior to any resource

/’/ response is solely a function of

.:E. 59.820 - > ;
> Inertia
=
Q
=5
o
@ |
‘.- |
» 59.680
3 :
59.540 | . Frequency Nadir is determined by
primary frequency response and
| f system inertia
59.400 - e |
0 8 16 24 32 40

Time (sec)

Dr. Ning Lu North Carolina State University
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Primary
frequency
response
resources

3000

5.0, 2640 APFR
2500 200, 2440 Slope= AFER
2000 500, 2040
- APFR
§ 900, 1640
< 1500
£ | 1300, 1240
- AFFR
500 Fast frequency response resources
0
0 200 400 600 800 1000 1200 1400
FFR (MW)
. : APFR
PFR/FFR Equivalency Ratio= - Slope= - AFER
. APFR :
Interpretation: To replace 1MW of FFR, - AFER MW of PFR is needed
APFR
(IMW FFR = - T===- MW PFR)

Dr. Ning Lu North Carolina State University
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Inertia vs. Net-Load
I [ I I T | T ] |

¥ Fast Frequency Response Resources — provided by DR o Self
Primary Frequency response - Generation . 1 e QL
| caselo&
- N — |
e o : case9 ' = T
=t : case8 _L
o = | Case7 e
S 250 L3 B ] 1 |
o | - -
1 + | caseb & :
E _;_ : | .
200 - I : case5 : |
. ! L
: cased {
I = = I
—_— I 1
150 + I case3| ' | |
-] 5
case2 E |
casel _L_ -
| | | | 1 I | . ! ,
15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65

Net-Load Level (GW)

10/25/2018 Dr. Ning Lu North Carolina ShdirmgUniv®&sitih Carolina State University) 46
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® Low Inertia Condition ® Mid Inertia Condition High Inertia Condition
3500
3000
.-
2500 -""---._____Equivalencv Ratio= 1.4
Equivalency Ratio= 2.2
S 2000 | .
2 Equivalency Ratio= 1.08 '
e« T
& 1500 . - g
High inertia .
1000 low inertia
500
0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

FFR (MW)

Dr. Ning Lu North Carolina State University 47
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SYSTEMS CENTER Lab

Inertia vs. Net-Load
I [ T I T I I T I
casel2 — —

I casell g
T caselo& =5

= — o s -
300 | case9 t‘
. — |

=T
| caseR
|

350

T

. NN
s + I [
E a0 A - PFR Requirement Look-up Table
L] 1 . ]
Tg’ - : caseﬁ&- :
E _;_ 1 I i
T N
| 1
£ - i Net-Load Level (GW) 1520 1520 20-25 25-30 30-35 4550 50-55 55-60 60-65 60-65
T ]
. — i 1 Inertia (GW-s) 120 136 152 177 202 230 256 278 297 316 332 350
I |
_J_ -
cask2 i PFR ';""q::‘l':’;"‘e“t 5200 4700 3750 3370 3100 3040 2640 2640 2240 2280 2140 2140
caslel 1 ( 9 )
| L ! | L Equivalency Ratio 22 2 1.5 14 13 | 125 113 1608 1 1 1 1
15-20 20- 25 25-30 30-35 35-40 40-45
*Minimum PFR

Net-Load Level (GW) 1143 1143 1143 1143 1143 1143 1143 1143 1143 1143 1143 1143

Requirement

FFR Requirement 1844 1779 1738 1591 1505 1518 1325 1386 1097 1137 997 997

PFR Requirement ( Inertia i) — PFRmin_gen

FFR (Inertia i) =
(HiErEa) Equivalency Ratio( Inertia i))

Dr. Ning Lu North Carolina State University 48
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Equivalency Ratio
25

15 &

0.5

0 50 100 150 200 250 300 350 400
Inertia (GW*s)

Low Load; High Load;
High Wind System Conditions Low Wind

Low Inertia High Inertia

1

Dr. Ning Lu North Carolina State University
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Part 5: Provision of Frequency Response Services
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FRE —1vi  Reward Service based on Performance
SYSTEMS CENTER

1. A forward financial electricity market cleared in Day-Ahead
2. Energy and Primary Frequency Response Reserve (PFR) are co-optimized
3. Provide price certainty and discovery for the next operating day

Energy Offers
Pricing
I (Energy, PFR/ FFR)
Day-Ahead
Market Awards
PFR/FER Offers (Energy, PFR/ FFR)

Inertia Forecast

Dr. Ning Lu North Carolina State University

GridWrx

Lab
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FREEZWi co-optimization of Energy and Ancillary &19%"

SYSTEMS CENTER Lab
Nd Ng Ng Nd f S
PFR PFR FFR PFR e i
max{} b,(d )= fi(p) = 2L (p )2 S (L e
. P i i The Gap
| J=1 J 1 = ] 1 =] J lj ; | ' Offer-based
| | T T T Costs
Energy bid Energy offer PFR offer FFR offer
Variables: Parameters:
dj Energy bid award for load j (MW) bf (d;) Energy bid for load j (S/MWh)
pf Energy offer award for unit i (MW) f:, (pi ) Energy offer for unit i (S/MWh)
pPFR,{ PFR award for unit i (MW) ﬁPFR (pf PFR ) PFR offer for uniti (S/MW)
FFR FFR -
pFFRJ- FFR award for load j (MW) fj (Pj ) FFR offer for loadj ($/MW)
-~ A
’ Supply curve
Demand curve "
S £
E Markat clearing price 3
o o 2 Equilibrium _%
I AT P e R S <" —— of supply U Demand curve
g and demand /
Energy (MWh) - PFR (MW) ’ =

Li, Weifeng, Pengwei Du, and Ning Lu. "Design of a New Primary Frequency Control Market for Hosting Frequency Response Reserve Offers from both Generators and Loads." IEEE Transactions
on Smart Grid (2017).

Dr. Ning Lu North Carolina State University 52
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Lagrange Function:

Ne Ne Nd

L=Yf [p{;TszFH( Pm]+2jjm[p ﬂr“"’) Zb (dj)+ax(~ Zpi Yd )- ﬁxgzp,*"”-’+mzpfm ~PFR ;1 )- ax[Zpﬂ‘er ~ PFRoyin gen)+
i=l i=l j=l i=l j=1 i=l j=1 i=l

HSL;

Ng T 2 Ng - - P LS|y _ - Nd FiR, Nd _ Nd
_i{['ﬂf} x (M x p_PFR —| PFR; ]}—ai[ﬂ} x (M x p-P —| PFR; |))+ EI{I?JK{P} d ))— TI{J;_prj Zlﬁ x[d' Df )) - thﬁxdj-}
i= i HSLI i= i LSL} = J= _f- =
First-Order Necessary Conditions: n ‘ T
Pil - LsL; | [o
I
SI _ , r— 7 Piz x{_.u{ PFR]— PFR; [)=|0
gl R <o |-Mi"x{ g =0 P = | £s7; | 9]
6L __PFR, PFR\, o _ M Temedll ST 20 N T —
= j‘PF.R —vﬁ '.p]' ) ﬁ ﬂ'+M:_" X[F‘;] M._. x[&]—ﬂ o . _H!S[Lf_ _ﬂ_
SL FFR FFR = Pi2 x(M x[ PFR]_ PFR: )=|0
=V )—mpfB+n;—n;=0 — - .
5p PR )P, P+nj=n,; o Pi St |
BL o b A—m 40 —0 =1 — W FFR_g\ o nixpFFR=g
Sdj V) F R | nixpj — —dj)= )
Ne 8.xd.=0 P
Bx (EPIPFR_'_mXEPJFFR_PFRW”] 0 i 8 x(D;—d;)=0
i=l j=1
- .-:T 6,20

i=l
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SYSTEMS CENTER Lab
(PFR Constraints)

Ng PFR Nd FFR > PER For each hour:

zpz +mX Z p 5 min Inertia can be forecasted based on historical data
i=1 J=1 and thus minimum requirement for PFR and

Ng FFR/PFR Equivalency Ratio m are determined as a

PFR > PFR o
Zp i . min_gen istoci
. o
Parameters: gnfgiced
m Equivalency ratio between PFR and FFR PFR, . cen Minimum amount of PFR from generators

PFR,,;», Minimum amount of PFR required (MW) required (MW)

IS ) 7 ) g oy e e e

Inertia (GW's)

FFR/PFR Ratio 2.2 2 1.5 1.4 13 128 | 118 | 108 1 1 1 1

Minimum PFR
Requirement from Gen

FFR Requirement 1844 1779 1738 1591 1505 1518 1325 1386 1097 1137 997 997 54

1143 1143 1143 1143 1143 1143 1143 1143 1143 1143 1143 1143
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Eliminate price spikes
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Assumed System Condition :

Inertia :230 GW*s, PFR min_gen=1143 MW, PFR min=3040 MW, PFR/FFR Ratio=1.25

Capacity Energy Offers | PFR Capacity Tntal FFR Capaci FFR offers

[0,11000] [0,2200] Li{must serve) 26200
GZ [0,9000] SU [0,1800] 15 L2{must serve) 8000
G3 [0,20000] 20 [0,4000] 10 L3{must serve) 6000
G4 [0,10000] 10 - = L4 400
G5 (Wind) [0,2000] 0.01 - = L5 200
Energy Clearing Price: 120 5/MWh
30000 /
120
25000
Opportunity Cost: 70 $/MWh 100
20000
80
=
% 15000 =
el
10000 40
5000 _— 20
0 -
G3 G4 G5 (Wind)
IS Energy S PFR ! Available Capacity Energy Offer === PFR Offer

b’ I n

1 NI I =\

No FFR

EDUD -
8000 -

30 [0,400]

25 - -
Energy/PFR (G1) 40/2200
Energy/PFR (G2) 8160/840
Enerzy/PFR (G3) 20000/0
Enerzy/PFR (G4) 10000/-
Energy/PFR (G5) 2000/-
Energy/FFR (L1) 26200/-
Energy/FFR (L2) 2000/-
Energy/FFR (L3) 6000/-
Enerpy/FFR (L4) 0/0
Energy/FFR (LS) 0/0

Energy A=120
Cleaning Price (S/MWh)
PFR a+B=85
Clearing Price (S/MW)
FFR mB=106.25
Clearing Price (S/MW)
LafP 120,085

TN\ LT WAL VIITHIW W ililAlWw Wi IIVVIUII.]
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SYSTEMS CENTER Lab

Assumed System Condition :
Inertia :230 GW*s, PFR min_gen=1143 MW, PFR min=3040 MW, PFR/FFR Ratio=1.25

Gensiaton paclty Energy Dﬂ'ers PFR Capacity offers Toul Bi o FFR Ca FFR oﬁm
($/MWh (Mw) e ($/Mw

[0,11000] [0,2200] Li{must serve) 25200
[0,9000] [0,1800] 15 L2(must serve) ama -
63 [0,20000] zn [0,4000] 10 L3{must serve) sum 8000 = NO FFR
G4 [0,10000] 10 = - L4 400 30 [0,400]
G5 (Wind) [0,2000] 0.01 = - L5 200 25 =
30000 Energy/PFR (G1) 40/2200
oo Energy/PFR (G2) B160/840
Energy/PFR (G3) 2000040
A0 Energy/PFR (G4) 10000/-
PER Clearing Price: 855/MW 100 -
Energy/PFR (G5) 2000/-
2 » Energy/FFR (L1) 26200/-
z = EnergviFFR (L2) 8000/-
Z 15000 &= Energy/FFR (L3) 6000/-
0 $/Mw h Energy/FFR (L4) 0/0
10000 40 Energy/FFR (L3) 0/0
' Energy A=120
S .' "“* ———— 2 Clearing Price | (S/MWh)
PFR a+B=83
0 L 0 Clearing Price | (S/MW)
G5 (Wind) FFR mp=10625
B Fnergy @EEENPFR 2B ! Available Capacity Energy Offer === PFR Offer Cleaning Price (S/MW)
Ao B 120,085 11

oy —— - et et met e e — i — e — e |




=\Qh A
-’ 1 V1
SYSTEMS CENTER

GridWrx
Lab

FRE

With FFR: Energy price may drop

Capacity Energv foers PFR Capacity Total Load FFR Capacity FFR offers
EEEEEEE DR
[0,11000] [0,2200] L1{must serve) 26200
GI [0,9000] 5[] [0,1800] 15 L2(must serve) 8000 Eﬂﬂﬂ - -
G3 [0,20000] 20 [0,4000] 10 L3(must serve) 6000 8000 - -
G4 [0,10000] 10 - - L4 400 30 [0,400] 8 With FFR
G5 (Wind) [0,2000] 0.01 > - L5 200 25 - s
30000 Enerzy/FPFR (G1) 0/2200
120 Energy/PFR (G2) 8360/640
25000 Energy Clearing Price: 87 5/MWh Enersy/PFR (G3) 20000/0
/ 100 Energy/PFR (G4) 10000/-
20000 Energy/PFR (G5) 2000/-
' 80 = Energy/FFR (L1) 26200/-
= 15000 s Energy/FFR (1) 8000/-
= 3751 60 ~
i Energy/FFR. (L3) 6000/-
10600 - o Energy/FFR (L4) 160/160
‘ Energy/FFR (L5) 0/0
5000 : = . ! 20 Energy A=87
——— - Clearing Price (S/MWh)
0 —=- .- 0 PFR a+f=52
& Ez S % G5 (Wind) % Clearing Price | (S/MW)
S . FFR mp=635
I Energy N PFR | Available Capacity Energy Offer == == PFR Offer . ) ]
Cleaning Price (S/MW)
La B 87052 5

pDr. NINg LU

NOrin varolina state university
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Capacity Energv foers PFR Ca Lnad FFR Capacity FFR offe
Generator nffers Bids
[0,11000] [0,2200] L1{must serve) 26200
GI [0,9000] SU [0,1800] 15 L2(must serve) 8000 Eﬂﬂ{} -
G3 [0,20000] 20 [0,4000] 10 13(must serve) 6000 8000 =
G4 [0,10000] 10 - - L4 400 30 [0,400] 8 With FFR
G5 (Wind) [0,2000] 0.01 - - L5 200 25 -
30000 Enerzy/PFR (G1) /2200
120 Enerzy/PFR (G2) 8360/640
25000 Enerzy/PFR (G3) 20000/0
100 Energy/PFR (G4) 10000/-
20000 Energy/PFR (G5) 2000/-
. 80 * Energy/FFR (L1) 26200/-
% 15000 PFR Clearing Price: 525/MW 8 = Ll o
e Energy/FFR (L3) 6000/-
o 70 Energy/FFR (L3) 0/0
5000 20 Energy =87
— Sm— Clearing Price |  (S/MWh)
0 ---En 0 PFR a+f=52
&1 G2 3 o G5 (Wind) L4 Clearing Price | (S/MW)
FFR mpB=65
BN Energy SN PFR | Available Capacity Energy Offer == === PER Offer Cleaviin Price (S/MW)
Aa,fB 87,052 3
58
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Assumed System Condition :
Inertia :230 GW*s, PFR min_gen=1143 MW, PFR min=3040MW, PFR/FFR Ratio=1.25

Energy
Capacity Emzvrg',t PFR Capacity Total Load FFR Capacity FFR
- “

[0,11000] 121] [0,2200] L1{must serve) 25200
[0,9000] [0,1800] L2{must serve) - -
G‘:’t [0,20000] ZD [0,4000] lﬂ L3(must serve) E(]Dﬂ Sﬂﬂﬂ - -
G4 [0,10000] 10 - - L4 400 30 [0,400] 1-30
G5 (Wind) [0,2000] 0.01 - - L5 200 25 - -

Allow the FFR resources to provide frequency service will
increase the price elasticity.

——Energy MCP ——PFR MCP FFR MCP

140 * When L4 increases its bid from S1/MW to
s = S$17/MW, the resulting price mitigation effect
£= 100 is diminishing.
w 80
g; 60 * The cost for L4 to provide FFR increases to a
§ 40 certain point, the revenue it receives for
S providing FFR can no longer offset the

additional payment made to purchase

i1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 energy.

L4 FFR Offer ($/MW) 59
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