FREEDING GridWrx Lab SYSTEMS CENTER

Providing Frequency Regulation Services using Energy Storage Systems

Professor Ning Lu and Yao Meng

Please visit my <u>homepage</u>: https://sites.google.com/a/ncsu.edu/ninglu/

Prepared for IEEE IAS/PES/WIE, Oct. 24, 2018

FREENT SYSTEMS CENTER

Outline

GridWrx

Lab

- 1. Background
- 2. Regulation Services
- 3. Modeling of Energy Storage Devices
- 4. Cost Benefit Study: Regulation Services
- 5. Fast Frequency Response Services
- 6. Provision of Frequency Response Services

GridWrX Lab: Faculties

Research Areas

- PV Integration
- Energy Storage
- Electric Power Distribution System Analysis
- Energy Management Systems
- Microgrid
- Distribution automation
- Advanced Data Analytics

Ning Lu nlu2@ncsu.edu David Lubkeman dllubkem@ncsu.edu Mesut Baran baran@ncsu.edu

Dr. Ning Lu

FREENTS SYSTEMS CENTER

GridWrX Lab: PHD Students

GridWrx Lab

- GridWrx lab is currently the home of 15 PhD students
- We also host undergraduate researchers, master students, and visiting scholars to maintain a diversified group.

REEDH GridWrX Lab: Dr. Lu's Research Group SYSTEMS CENTER

Microgrid, Home and Building Energy Management

Dr. Ning Lu

Energy Storage, Renewable Integration, and Smart Planning

David Mulcahy djmulcah@ncsu.edu

wli27@ncsu.edu

Xinda Ke xke@ncsu.edu

Asmaa Alrushoud aalrush@ncsu.edu

Caite McEntee

Jivu Wang jwang49@ncsu.edu

Data Analytics

Ming Liang mliang3@ncsu.edu

North Carolina State University

Hardware-in-the-loop Test Systems

Fuhong Xie

fxie2@ncsu.edu

Mingzhi Zhang mzhang33@ncsu.edu

5

FREEDING GridWrx Lab SYSTEMS CENTER

Part 1: Background

References 1: NCSU

- 1. Li, Weifeng, Pengwei Du, and Ning Lu. "Design of a New Primary Frequency Control Market for Hosting Frequency Response Reserve Offers from both Generators and Loads." *IEEE Transactions on Smart Grid* (2017).
- 2. Xiangi Zhu, Jiahong Yan, and Ning Lu. "A Graphical Performance-based Energy Storage Capacity Sizing Method for High Solar Penetration Residential Feeders", IEEE trans. on Smart Grid, Volume: 8, Issue: 1, Jan. 2017.
- 3. Ke, X. D., Wu, D., Rice, J., Kintner-Meyer, M., & Lu, N. (2016). Quantifying impacts of heat waves on power grid operation. *Applied Energy*, 183, 504-512.
- 4. X Ke, N Lu, and C Jin, "Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources," IEEE Trans. on Sustainable Energy, vol. 6, No. 1, Jan. 2015.
- 5. N Lu and M Vanouni, "Passive energy storage using distributed electric loads with thermal storage," Journal of Modern Power Systems and Clean Energy, 2013, DOI 10.1007/s40565-013-0033-z.
- 6. C. Jin, N Lu, S. Lu, Y Makarov, and R.A. Dougal, "A Coordinating Algorithm for Dispatching Regulation Services Between Slow and Fast Power Regulating Resources," IEEE Trans. on Smart Grid, vol. 5, No. 2, March 2014.
- 7. N Lu, JH Chow, and AA Desrochers, "Pumped-Storage Hydro-Turbine Bidding Strategies in a Competitive Electricity Market." IEEE Trans. on Power Systems 19:834-842, 2004.
- 8. Jiyu Wang, Xiangqi Zhu, David Mulcahy, Catie McEntee, David Lubkeman, Ning Lu, Nader Samaan, Brant Werts, and Andrew Kling. "A Two-Step Load Disaggregation Algorithm for Quasi-Static Time-Series Analysis on Actual Distribution Feeders," accepted by the 2018 IEEE Power & Energy Society General Meeting, Portland, OR, 2018.
- 9. Fuhong Xie, N. Lu, and Jiahong Yan, "Design of a Mobile Energy Management Unit for Off-grid Mini-microgrids," accepted by Proc. of 2018 IEEE Power & Energy Society General Meeting, Portland, OR, 2018.
- 10. G. Henri and N. Lu, "A Multi-Agent Shared Machine Learning Approach for Real-time Battery Operation Mode rediction and Control," Accepted by Proc. of 2018 IEEE Power & Energy Society General Meeting, Portland, OR, 2018.
- 11. G. Henri, N. Lu, and C. Carrejo, "A Machine Learning Approach for Real-time Battery Optimal Operation Mode Prediction and Control", Proc. of IEEE/PES Transmission and Distribution Conference and Exposition, 2018.
- 12. G. Henri, N. Lu, and C. Carrejo, "Design of a Novel Mode-based Energy Storage Controller for Residential PV Systems." Proc. of 2017 Power & Energy Society ISGT Europe Conference, Turino, 2017. (can be downloaded at the the link provided below)
- 13. Xiangqi Zhu, Gonzague Henri, Jiahong Yan, and N. Lu. "A Cost-Benefit Study of Sizing Residential PV and ES Systems based on Synthesized Load Profiles", Proc. of 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, 2017.

For more reference for the paper we published in the area of energy storage please visit my website.

Dr. Ning Lu

References: PNNL

- 1. N Lu, YV Makarov, and MR Weimar. 2010. *The Wide-area Energy Storage and Management System Phase 2 Final Report*. PNNL-19720. Pacific Northwest National Laboratory, Richland, Washington.
- 2. N Lu, YV Makarov, MR Weimar, F Frank, S. Murthy, J. Arseneaux, C. Loutan, and S Chowdhury. 2010. *The Wide-area Energy Storage and Management System (Phase 2): Interim Report (2) Flywheel Field Tests*. PNNL-19669, Pacific Northwest National Laboratory, Richland, Washington.
- 3. Chunlian Jin, Ning Lu, Shuai Lu, Yuri Makarov, Roger A. Dougal, 2010. "Novel Dispatch Algorithm for Regulation Service using a Hybrid Energy Storage System" *Proc. of the 2011 IEEE PES General Meeting*, Detroit, Michigan, USA.
- 4. Chunlian Jin, Shuai Lu, Ning Lu, Roger A. Dougal. 2010. "Cross-Market Optimization for Hybrid Energy Storage Systems," *Proc. of the 2011 IEEE PES General Meeting*, Detroit, Michigan, USA.
- 5. N Lu, MR Weimar, YV Makarov, and C Loutan. 2010. "An Evaluation of the NaS Battery Storage Potential for Providing Regulation Service in California." *Proc. of the 2011 IEEE PSCE*, Phoenix, Arizona.
- 8. N Lu, MR Weimar, YV Makarov, FJ Rudolph, SN Murthy, J Arseneaux, and C Loutan. 2010. "An Evaluation of the Flywheel Potential for Providing Regulation Service in California." In: *Proc. of the 2010 IEEE PES General Meeting*, Minneapolis, Minnesota.
- 9. S Lu, YV Makarov, Y Zhu, N Lu, K Prakash, C Nirupama, and B Bhujanga. 2010. "Unit Commitment Considering Generation Flexibility and Environmental Constraints." In: *Proc. of the 2010 IEEE PES General Meeting*, Minneapolis, Minnesota.
- B. Yang, Y. Makarov, J. DeSteese, V. Viswanathan, P. Nyeng, B. McManus and J. Pease, "On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy", Proc. 5th Int. Conf. on the European Electricity Market, Lisbon, Portugal, May 28-30, 2008.
- 11. P. Nyeng, B. Yang, J. Ma, Y.V. Makarov, J. H. Pease, D. Hawkins and C. Loutan, "Coordinated multi-objective control of regulating resources in multi-area power systems with large penetration of wind power generation", Proc. 7th Int. Workshop on Large-Scale Integration of Wind Power into Power Systems, Madrid, Spain, May 26-27, 2008.
- Y.V. Makarov, B. Yang, J.G. DeSteese, P. Nyeng, C.H. Miller, J. Ma, S. Lu, V.V. Viswanathan, D.J. Hammerstrom, B. McManus, J. H. Pease, C. Loutan and G. Rosenblum "Wide-Area Energy Storage and Management System to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas," Proc. 8th Int. Workshop on Large-Scale Integration of Wind Power into Power Systems, Bremen, Germany, Oct. 14-15, 2009.
- 13. Y.V. Makarov, P. Nyeng, B. Yang, J. Ma, J.G. DeSteese, D.J. Hammerstrom, S. Lu, V.V. Viswanathan, and C.H. Miller, Wide-Area Energy Storage and Management System to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas. PNNL-17574. Pacific Northwest National Laboratory, Richland, WA, 2008.

<u>Dr. Ning Lu</u>

GridWrx

Lab

- Superconducting magnetic energy storage (SMES)
- Super capacitors
- Pumped-hydro power plants (PHP)
- Compressed air energy storage (CAES)
- Flywheels
- Batteries
 - NaS (sodium-sulfur), Li-ion, lead acid, flow batteries, etc.
 - Electric vehicles
- Thermal energy storage devices
 - Ice storage, water heaters, air conditioning units, etc.
 - Demand response programs using load with thermal storage capabilities

FREENTER SYSTEMS CENTER

Classification of ES Technologies

Dr. Ning Lu

Applications

GridWrx Lab

Traditional (Energy Markets)

- Backup
- Peak shaving
- Energy shifting
- Arbitrage
- Advanced (Ancillary Services)
 - Regulation
 - Load following service
 - Frequency response
 - Spinning/non-spinning reserves
 - Reactive power support

<u>Dr. Ning Lu</u>

Applications

GridWrx Lab

Traditional (Energy Markets)

- Backup
- Peak shaving
- Energy shifting
- Arbitrage
- Advanced (Ancillary Services)
 - Regulation
 - Load following service
 - Frequency response
 - Spinning/non-spinning reserves
 - Reactive power support

<u>Dr. Ning Lu</u>

FREEDING GridWrx Lab SYSTEMS CENTER

Part 2: Regulation Services

- 1. Yao Meng, Ming Liang, Ning Lu, "A Cost Benefit Study of using Energy Storage to Provide Frequency Regulation" Submitted to 2019 IEEE ISGT conference.
- 2. N Lu, YV Makarov, and MR Weimar. 2010. *The Wide-area Energy Storage and Management System Phase 2 Final Report*. PNNL-19720. Pacific Northwest National Laboratory, Richland, Washington.
- N Lu, YV Makarov, MR Weimar, F Frank, S. Murthy, J. Arseneaux, C. Loutan, and S Chowdhury. 2010. The Wide-area Energy Storage and Management System (Phase 2): Interim Report (2) – Flywheel Field Tests. PNNL-19669, Pacific Northwest National Laboratory, Richland, Washington.
- 4. Chunlian Jin, Ning Lu, Shuai Lu, Yuri Makarov, Roger A. Dougal, 2010. "Novel Dispatch Algorithm for Regulation Service using a Hybrid Energy Storage System" *Proc. of the 2011 IEEE PES General Meeting*, Detroit, Michigan, USA.
- 5. Chunlian Jin, Shuai Lu, Ning Lu, Roger A. Dougal. 2010. "Cross-Market Optimization for Hybrid Energy Storage Systems," *Proc. of the 2011 IEEE PES General Meeting*, Detroit, Michigan, USA.
- 6. N Lu, MR Weimar, YV Makarov, and C Loutan. 2010. "An Evaluation of the NaS Battery Storage Potential for Providing Regulation Service in California." *Proc. of the 2011 IEEE PSCE*, Phoenix, Arizona.
- 7. N Lu, MR Weimar, YV Makarov, FJ Rudolph, SN Murthy, J Arseneaux, and C Loutan. 2010. "An Evaluation of the Flywheel Potential for Providing Regulation Service in California." In: *Proc. of the 2010 IEEE PES General Meeting*, Minneapolis, Minnesota.

An Example of Load Balancing

GridWrx Lab

Intra-hour Applications

An Example of Load Balancing

GridWrx Lab

Balance the mismatches between the load forecast and the actual load

Figure by Craig Taylor and Don DeBerry, presented at 2002 OSIsoft T&D Users Conference

<u>Dr. Ning Lu</u>

Regulation Service

- GridWrx Lab
- **Regulation services:** balances generation and load in real-time to maintain system frequency and tieline power flows at the scheduled values.
- **Inputs:** Area Control Error(ACE) and Tie-line Flow Deviations.
- Signal resolution: 2-10 seconds
- **Characteristics:** mostly energy neutral, random in magnitude (very hard to forecast)

Energy Storage for Regulation Service

GridWrx Lab

Slow ramping Generator

VS.

Advanced Energy Storage

1. Reduce the wear-and-tear of the traditional generators

Advantages

- 2. Reduce the amount of required regulation capacity
- 3. Improve the quality of regulation services

Dr. Ning Lu

GridWrx Lab

- Energy storage systems have energy limits.
 - When regulation signals have significant DC components, energy storage devices will soon be fully charged/discharged
- Three approaches to deal with this issue
 - Design energy-neutral frequency regulation signal
 - **Design operation strategy** to maintain the state-of-charge (SOC) levels
 - Allow storage to adjust its committed regulation services in a shorter interval
- The first method has been implemented by PJM and ISO-NE.
 - Fast regulation signal: Applying a high-pass filter to the AGC signal.
 - Signals with a fast ramping rate but energy neutral.

<u>Dr. Ning Lu</u>

Enabling Factors

GridWrx Lab

Monetary Incentives: FERC Order 755 requires the implementation of **pay-for-performance** regulation market

0.12

80.0 8

Probability of Occu 20.0 Probability of Occu

Design Considerations: FERC Order 784 requires the **improvement of signal design** considering the state of charge constraint of energy storage system

Dr. Ning Lu

Regulation capacity: participating resource will be rewarded by the bidding capacity P_{bid}^{reg} , unit: \$/MWh. Regulation-up and regulation down signals have the same power limit except in the CASIO control area

Regulation mileage *M*: the sum of the absolute values of the regulation control signal movements, unit ΔMW , P_t^{reg} is the power output of a regulation unit at *t*

$$M = \sum_{0}^{T} \frac{\left|P_t^{reg} - P_{t-1}^{reg}\right|}{P_{bid}^{reg}}$$

Performance factor λ : A value between 0 and 1, represent the response accuracy with respect to the regulation instructions. A general penalization format is as follows:

$$Payment = P_{bid}^{reg}(\rho_c + \lambda M \rho_M)$$

where ρ_c , ρ_M are capacity clearing price and mileage clearing price, respectively. In this analysis, we assume $\lambda = 1$.

Dr. Ning Lu

SYSTEMS CENTER

Regulation Mileage

GridWrx Lab

FREECITA GridWrx Lab SYSTEMS CENTER

Part 3: Modeling of Energy Storage Devices

Energy Storage Models

$$\begin{split} E_t - E_{t-1} &= \Delta t \eta_c P_t^{RegDown} - \Delta t \eta_d P_t^{RegUp} - \Delta t P_t^{SelfDisc} \\ & \begin{array}{c} \text{Discharged} \\ \text{energy} \end{array} \begin{array}{c} \text{Charging} \\ \text{energy} \end{array} \begin{array}{c} \text{Self-discharged} \\ \text{energy} \end{array} \\ & \begin{array}{c} 0 \leq P_t^{RegDown} \leq P_{bid}^{reg} \\ 0 \leq -P_t^{RegUp} \leq P_{bid}^{reg} \end{array} \end{split}$$

 $E^{Lowerlim} \leq E_t \leq E^{Upperlim}$

Modeling Parameters

	ESS Technology	Lithium-ion	Flywheel
charging efficiency	η_c	0.85	0.95
discharging efficiency	η_d	1	0.95
self-discharging rate	$P_t^{SelfDisc}$	2-4% per month	2% per month

<u>Dr. Ning Lu</u>

SYSTEMS CENTER

GridWrx Lab

- Start-up nor shut-down costs are not considered
- Actual annual revenue for year 2017 is calculated and we assume that the • same revenue is received over the entire lifetime.
- Revenue includes two payments: mileages and capacity •
- Cost includes installation and O&M cost
- NPV (Net Present Value) is calculated assuming the discount rate is 10%

Revenue
$$R = R_{mileage} + R_{capacity}$$

Cost-of-service $C = C_{install} + C_{OSM}$

Cost-of-service

$$C = C_{install} + C_{O\&M}$$

Net Present Value

$$NPV = \sum_{i=1}^{N} \frac{V(i)}{(1+r)^{i}}$$

Profit =
$$NPV_{revenue} - NPV_{cost}$$

Dr. Ning Lu

- GridWrx Lab
- Lifetime of a battery storage system can be estimated based on how many charging/discharging cycles it has completed at different depth of discharge(DOD)
- Rain-flow algorithm is used for estimating battery lifetime depreciation
- The flywheel lifetime is assumed to be constant

One directional service: Energy storage system only takes "up" signal when discharging, while only taking "down" signal when charging

GridWrx Lab

Two directional service: Energy storage system can take both "up" and "down" signal when possible.

Dr. Ning Lu

To evaluate the accuracy of following regulation signals, we calculated **response rate** as:

$$RR = \frac{n_{fulfilled}}{n_{total}} \times 100\%$$

where $n_{fulfilled}$ is the number of regulation signals fully following by the ESS and n_{total} is the total number of regulation signals.

To evaluate the lifetime depreciation when providing regulation services, we calculated the **aging ratio**as:

$$A = \frac{L_{default} - L_{remain}}{L_{default}} \times 100\%$$

where $L_{default}$ is the default lifetime of battery, L_{remain} is the remaining lifetime after certain period of service estimated by rain-flow algorithm.

<u>Dr. Ning Lu</u>

FREESS SYSTEMS CENTER

- Regulation signals and the corresponding price data were downloaded from PJM and NY-ISO website, the data was collected from January 1, 2017 to December 31, 2017
- Designed lifetime of Li-ion battery is 10 years, while the designed lifetime of flywheel is 21 years
- The power and energy rating of Li-ion battery and flywheel is 1MW and 0.5 MWh, respectively
- Cost Parameters

Dr. Ning Lu

		Li-ion(0.5hr)	Li-ion(2hr)	Li-ion(4hr)	Flywheel
Technology	Current Cost(\$/kWh)	1650	725	525	4538.32
advancement	2030 Cost (\$/kWh)	629	276	200	-
	O&M(\$/Kw-yr)	10	10	10	7

FREEDING GridWrx Lab SYSTEMS CENTER

Part 4: Cost-benefit Study Results

Results Summary: Service Quality & Lifetime

GridWrx Lab

		PJM RegD		PJM RegA		NY-ISO	
		1- direction	2- direction	1- direction	2- direction	1- direction	2-direction
Battery	Mileage (∆MW/MW)	133470	263210	20101	35472	87562	156450
	Response Rate(%)	99.94	95.05	99.91	55.7	99.92	85.46
	Estimate Lifetime(yrs)	4.72	3.89	5.93	4.23	5.28	3.99
Flywheel	Mileage (∆MW/MW)	133810	294480	20291	43100	87140	159290
	Response Rate(%)	99.94	94.93	99.90	59.12	99.92	86.26
	Estimate Lifetime(yrs)	21	21	21	21	21	21

1. Regulation **signal design** makes a significant difference.

SYSTEMS CENTER

- 2. When providing regulation services, battery lifetimes are shortened.
- 3. When providing RegD services, battery lifetimes can be further shortened but not by much.
- 4. When providing 1-directional services, battery lifetimes can be prolonged.
- 5. As the flywheel can cycle as many times at low DOD as at high DODs, its lifetime is not affected by providing the regulation services.

<u>Dr. Ning Lu</u>

Profits comparison of different ESS technologies

Profits comparison of different battery sizes

A larger size battery has a longer service life. When supplying RegD, the service life are 3.8, 5.5, 13.5 years for 0.5, 2 and 4 hours battery, respectively.

- We have finished the following comparisons
 - Regular regulation signals **v.s.** storage-friendly signals
 - 1-directional v.s. 2-directional services
 - Regional differences (PJM v.s. NYISO)
 - Different battery sizes
 - energy storage technologies (Li-ion Battery v.s. Flywheel; lifetime sensitive to DOD v.s. lifetime not sensitive to DOD)
- What to come
 - Market-based **v.s.** non-market based regulation services
 - Need signals from non-market based systems
 - Different energy storage control algorithms
 - Optimize energy storage operation
 - Stack the regulation service with other type of services

<u>Dr. Ning Lu</u>

FREEDING GridWrx Lab SYSTEMS CENTER

Part 5: Fast Frequency Response Services

Li, Weifeng, Pengwei Du, and Ning Lu. "Design of a New Primary Frequency Control Market for Hosting Frequency Response Reserve Offers from both Generators and Loads." *IEEE Transactions on Smart Grid* (2017).

Frequency Response

<u>Dr. Ning Lu</u>
Primary Frequency Response

GridWrx Lab

Solos System response Solos So

Primary frequency response is the only control action that can oppose the free-fall of frequency within seconds before involuntary load shedding takes place.

Actual System Response

FREENTS CENTER

PFR Impact on Frequency

Loss of 2750 MW Generation

More primary frequency response \rightarrow less frequency drops and faster recovery

<u>Dr. Ning Lu</u>

North Carolina State University

GridWrx

Lab

Inertia Definition

GridWrx Lab

Inertia reflects a synchronous machine's physical character to slow down the rate of frequency change.

f: Rotating frequency of the machine, H: Inertia constant of the synchronous machine S_B : Rated power of the generator, ΔP_m : Change in mechanical power ΔP_e : Change in electric power demand

Dr. Ning Lu

Inertia Impacts on Frequency

GridWrx

Lab

Loss of 2750MW Generation

Declining Inertia

GridWrx Lab

2015 2016 2017 1st Quarter

*Data Source: ERCOT Operations Data

<u>Dr. Ning Lu</u>

Increasing Needs for Fast PFR

GridWrx Lab

*NERC and **National Labs recognize that large-scale integration of Renewables leads to decline in system inertia, causing a significant reduction of the primary frequency control (PFC) capability.

^{*}NERC Frequency Response Initiative, April, 2010

**E. Ela, M. Milligan, B. Kirby, A. Tuohy and D. Brooks, "Alternative approaches for incentivizing the frequency responsive reserve ancillary service," NREL, March 2012

<u>Dr. Ning Lu</u>

FREENTS CENTER

Comparison: PFR vs FFR

From Generators:

- Delivered within 12 to 16 seconds
- From governor response

From Load/ other resources:

- Delivered within 30 cycles (0.5 seconds)
- Triggered by under frequency relay (59.7Hz)
- Fast Frequency Response (FFR)

Frequency Response

Loss of 2750 MW Generation

Dr. Ning Lu

North Carolina State University

GridWrx Lab

Resource Equivalency

Primary frequency response resources

How to Address the FFR's Impact?

<u>Dr. Ning Lu</u>

North Carolina Staireg University Carolina State University) 46

FREENTS CENTER

North Carolina State University

GridWrx

Lab

SYSTEMS CENTER

A Look-up Table

55-60

50-55

60-65

60-65

PFR Requirement (Inertia i) – PFRmin_gen FFR (Inertia i) = Equivalency Ratio(Inertia i))

Dr. Ning Lu

SYSTEMS CENTER

Equivalency Ratio

GridWrx Lab

North Carolina State University

Dr. Ning Lu

FREEDING GridWrx Lab SYSTEMS CENTER

Part 5: Provision of Frequency Response Services

FREENS CENTER Reward Service based on Performance

GridWrx Lab

- 1. A forward financial electricity market cleared in Day-Ahead
- 2. Energy and Primary Frequency Response Reserve (PFR) are co-optimized
- 3. Provide price certainty and discovery for the next operating day

Co-optimization of Energy and Ancillary

GridWrx Lab

Li, Weifeng, Pengwei Du, and Ning Lu. "Design of a New Primary Frequency Control Market for Hosting Frequency Response Reserve Offers from both Generators and Loads." *IEEE Transactions on Smart Grid* (2017).

<u>Dr. Ning Lu</u>

N A SYSTEMS CENTER

Problem Formulation

 $\underline{\eta_j} \times p_j^{FFR} = 0$

 $\overline{\theta_j} \times (D_j - d_j) = 0$

GridWrx Lab

Lagrange Function:

$$L = \sum_{i=1}^{Ng} f_i(p_i) + \sum_{i=1}^{Ng} f_i^{PFR}\left(p_i^{PFR}\right) + \sum_{j=1}^{Nd} f_j^{FFR}\left(p_j^{FFR}\right) - \sum_{j=1}^{Nd} b_j(d_j) + \lambda \times \left(-\sum_{i=1}^{Ng} p_i + \sum_{j=1}^{Nd} d_j\right) - \beta \times \left(\sum_{i=1}^{Ng} p_i^{PFR} - PFR_{\min}\right) - \alpha \times \left(\sum_{i=1}^{Ng} p_i^{PFR} - PFR_{\min}_{\min}\right) + \sum_{i=1}^{Ng} \left(-\frac{P_i}{p_i}\right)^T \times \left(M \times \left[\frac{P_i}{p_i^{PFR}}\right] - \left[\frac{HSL_i}{PFR_i}\right]\right) \right) - \sum_{i=1}^{Ng} \left(\frac{P_i}{p_i^{PFR}}\right)^T \times \left(M \times \left[\frac{P_i}{p_i^{PFR}}\right] - \left[\frac{LSL_i}{PFR_i}\right]\right) \right) + \sum_{j=1}^{Nd} \left(\overline{\eta_j} \times \left(p_j^{FFR} - d_j\right)\right) - \sum_{j=1}^{Nd} \left(\overline{\eta_j} \times \left(d_j - D_j\right)\right) - \sum_{j=1}^{Nd} \left(\underline{\theta_j} \times d_j\right) + \sum_{j=1}^{Nd} \left(\underline{\theta_j} \times d_j\right)$$

First-Order Necessary Conditions:

$$\begin{aligned} \frac{\delta L}{\delta P_{i}} = \nabla f_{i}(p_{i}) - \lambda + M_{1}^{T} \times \left[\overline{\rho_{i}}\right] - M_{1}^{T} \times \left[\underline{\rho_{i}}\right] = 0 \\ \frac{\delta L}{\delta P_{i}} = \nabla f_{i}^{PFR} = \nabla f_{i}^{PFR}(p_{i}^{PFR}) - \beta - \alpha + M_{2}^{T} \times \left[\overline{\rho_{i}}\right] - M_{2}^{T} \times \left[\underline{\rho_{i}}\right] = 0 \\ \frac{\delta L}{\delta p_{i}^{PFR}} = \nabla f_{i}^{FFR}(p_{i}^{PFR}) - \beta - \alpha + M_{2}^{T} \times \left[\overline{\rho_{i}}\right] - M_{2}^{T} \times \left[\underline{\rho_{i}}\right] = 0 \\ \frac{\delta L}{\delta p_{i}^{FFR}} = \nabla f_{i}^{FFR}(p_{i}^{FFR}) - m\beta + \overline{\eta_{i}} - \underline{\eta_{j}} = 0 \\ \frac{\delta L}{\delta q_{j}} = -\nabla b_{j}(d_{j}) + \lambda - \overline{\eta_{j}} + \overline{\theta_{j}} - \underline{\theta_{j}} = 0 \\ \beta \times \left(\sum_{i=1}^{Ng} p_{i}^{PFR} + m \times \sum_{j=1}^{Nd} p_{j}^{FFR} - PFR_{min}\right) = 0 \\ \alpha \times \left(\sum_{i=1}^{Ng} p_{i}^{PFR} - PFR_{min_gen}\right) = 0 \end{aligned}$$

$$\begin{aligned} p_{i1} & p_{i2} & p_{i3} \\ p_{i2} & p_{i3} \\ p_{i3} & (M \times \left[\frac{P_{i}}{p_{i}}\right] - \left[\frac{HSL_{i}}{PFR_{i}}\right] - \left[\frac{HSL_{i}}{PFR_{i}}\right] \right) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \frac{\delta L}{\delta d_{j}} = -\nabla b_{j}(d_{j}) + \lambda - \overline{\eta_{j}} + \overline{\theta_{j}} - \underline{\theta_{j}} = 0 \\ \beta \times \left(\sum_{i=1}^{Ng} p_{i}^{PFR} + m \times \sum_{j=1}^{Nd} p_{j}^{FFR} - PFR_{min}\right) = 0 \\ \beta =$$

PFR and FFR Equivalency

(PFR Constraints)

$$\sum_{i=1}^{Ng} p_i^{PFR} + m \times \sum_{j=1}^{Nd} p_j^{FFR} \ge PFR_{min} \longleftarrow$$

$$\sum_{i=1}^{Ng} p_i^{PFR} \ge PFR_{min_gen}$$

Parameters:

- *m* Equivalency ratio between PFR and FFR
- PFR_{min} Minimum amount of PFR required (MW)

For each hour:

Inertia can be forecasted based on historical data and thus minimum requirement for PFR and FFR/PFR Equivalency Ratio *m* are determined as *a priori*

A minimum requirement of PFR from Generator is enforced

PFR_{min_gen} Minimum amount of PFR from generators required (MW)

	Case1	Case2	Case3	Case4	Case5	Case6	Case7	Case8	Case9	Case10	Case11	Case12
Inertia (GW·s)	120	136	152	177	202	230	256	278	297	316	332	350
PFR Requirement (No FFR)	5200	4700	3750	3370	3100	3040	2640	2640	2240	2280	2140	2140
FFR/PFR Ratio	2.2	2	1.5	1.4	1.3	1.25	1.13	1.08	1	1	1	1
Minimum PFR Requirement from Gen	1143	1143	1143	1143	1143	1143	1143	1143	1143	1143	1143	1143
FFR Requirement	1844	1779	1738	1591	1505	1518	1325	1386	1097	1137	997	997

Eliminate price spikes

Assumed System Condition :

Inertia :230 GW*s, PFR min_gen=1143 MW, PFR min=3040 MW, PFR/FFR Ratio=1.25

Generator	Capacity (MW)	Energy Offers (\$/MWh)	PFR Capacity (MW)	PFR offers (\$/MW)	Load	Total Load (MW)	Energy Bids (\$/MWh)	FFR Capacity (MW)	FFR offers (\$/MW)
G1	[0,11000]	120	[0,2200]	20	L1(must serve)	26200	9000		
G2	[0,9000]	50	[0,1800]	15	L2(must serve)	8000	8000	-	1 a
G3	[0,20000]	20	[0,4000]	10	L3(must serve)	6000	8000	2-	NO FF
G4	[0,10000]	10	-	-	L4	400	30	[0,400]	-
G5 (Wind)	[0,2000]	0.01	-	-	L5	200	25	-	

Energy/PFR (G1)	40/2200
Energy/PFR (G2)	8160/840
Energy/PFR (G3)	20000/0
Energy/PFR (G4)	10000/-
Energy/PFR (G5)	2000/-
Energy/FFR (L1)	26200/-
Energy/FFR (L2)	8000/-
Energy/FFR (L3)	6000/-
Energy/FFR (L4)	0/0
Energy/FFR (L5)	0/0
Energy	λ=120
Clearing Price	(S/MWh)
PFR	α+β=85
Clearing Price	(S/MW)
FFR	mβ=106.25
Clearing Price	(S/MW)

120,0,85

40

λ, α, β

FREEN:

NO-FFR: Price Spikes in Both Market

GridWrx Lab

Assumed System Condition :

Inertia :230 GW*s, PFR min_gen=1143 MW, PFR min=3040 MW, PFR/FFR Ratio=1.25

Generator	Capacity (MW)	Energy Offers (\$/MWh)	PFR Capacity (MW)	PFR offers (\$/MW)	Load	Total Load (MW)	Energy Bids (\$/MWh)	FFR Capacity (MW)	FFR offers (\$/MW)
G1	[0,11000]	120	[0,2200]	20	L1(must serve)	26200	9000	-	-
G2	[0,9000]	50	[0,1800]	15	L2(must serve)	8000	8000	-	
G3	[0,20000]	20	[0,4000]	10	L3(must serve)	6000	8000	-	NO FFR
G4	[0,10000]	10	-	-	L4	400	30	[0,400]	-
G5 (Wind)	[0,2000]	0.01	-	-	L5	200	25		-

Energy/PFR (G1)	40/2200
Energy/PFR (G2)	8160/840
Energy/PFR (G3)	20000/0
Energy/PFR (G4)	10000/-
Energy/PFR (G5)	2000/-
Energy/FFR (L1)	26200/-
Energy/FFR (L2)	8000/-
Energy/FFR (L3)	6000/-
Energy/FFR (L4)	0/0
Energy/FFR (L5)	0/0

Energy	λ=120
Clearing Price	(\$/MWh)
PFR	α+β=85
Clearing Price	(\$/MW)
FFR	mβ=106.25
Clearing Price	(\$/MW)
λ, α, β	120,0,85

- J

56

With FFR: Energy price may drop

Total Load

(MW)

26200

8000

6000

400

200

GridWrx Lab

With FFR

Generator	Capacity (MW)	Energy Offers (\$/MWh)	PFR Capacity (MW)	PFR offers (\$/MW)	Load
G1	[0,11000]	120	[0,2200]	20	L1(must serve)
G2	[0,9000]	50	[0,1800]	15	L2(must serve)
G3	[0,20000]	20	[0,4000]	10	L3(must serve)
G4	[0,10000]	10	-	-	L4
G5 (Wind)	[0,2000]	0.01	-	-	L5

ЛЛ

SYSTEMS CENTER

VI

Energy/PFR (G1)	0/2200		
Energy/PFR (G2)	8360/640		
Energy/PFR (G3)	20000/0		
Energy/PFR (G4)	10000/-		
Energy/PFR (G5)	2000/-		
Energy/FFR (L1)	26200/-		
Energy/FFR (L2)	8000/-		
Energy/FFR (L3)	6000/-		
Energy/FFR (L4)	160/160		
Energy/FFR (L5)	0/0		
Energy	λ=87		
Clearing Price	(\$/MWh)		
PFR	$\alpha + \beta = 52$		

FFR Capacity

(MW)

-

-

[0,400]

FFR offers

(\$/MW)

-

-

8

42

Energy

Bids

(\$/MWh)

9000

8000

8000

30

25

(S/MWh)
α+β=52
(\$/MW)
mβ=65
(\$/MW)
87,0,52

Dr. INING LU

With FFR: PFR price will drop too

Total Load

(MW)

26200

8000

6000

400

200

Load

L1(must serve)

L2(must serve)

L3(must serve)

L4

L5

Energy

Bids

(\$/MWh)

9000

8000

8000

30

25

GridWrx Lab

Generator	Capacity (MW)	Energy Offers (\$/MWh)	PFR Capacity (MW)	PFR offers (\$/MW)
G1	[0,11000]	120	[0,2200]	20
G2	[0,9000]	50	[0,1800]	15
G3	[0,20000]	20	[0,4000]	10
G4	[0,10000]	10	-	-
G5 (Wind)	[0,2000]	0.01	-	

SYSTEMS CENTER

VI

En	ergy/PFR (G1)	0/2200			
En	ergy/PFR (G2)	8360/640			
En	ergy/PFR (G3)	20000/0			
En	ergy/PFR (G4)	10000/-			
En	ergy/PFR (G5)	2000/-			
En	ergy/FFR (L1)	26200/-			
En	ergy/FFR (L2)	8000/-			
En	ergy/FFR (L3)	6000/- 160/ 160			
En	ergy/FFR (L4)				
En	ergy/FFR (L5)	0/0			
	Energy	λ=87	1		
	Clearing Price	(\$/MWh)			
	PFR	α+β=52	1		
	Clearing Price	(\$/MW)			
	FFR	mβ=65	1		
	Clearing Price	(\$/MW)			
	λ, α, β	87,0,52	4		

FFR Capacity

(MW)

[0,400]

FFR offers

(\$/MW)

-

8

-

With FFR

<u>Dr. Ning Lu</u>

Diminishing Mitigation Effects

GridWrx Lab

Assumed System Condition :

Inertia :230 GW*s, PFR min_gen=1143 MW, PFR min=3040MW, PFR/FFR Ratio=1.25

Generator	Capacity (MW)	Energy Offers (\$/MWh)	PFR Capacity (MW)	PFR offers (\$/MW)	Load	Total Load (MW)	Energy Bids (\$/MWh)	FFR Capacity (MW)	FFR offers (\$/MW)
G1	[0,11000]	120	[0,2200]	20	L1(must serve)	26200	9000		
G2	[0,9000]	50	[0,1800]	15	L2(must serve)	8000	8000		-
G3	[0,20000]	20	[0,4000]	10	L3(must serve)	6000	8000	14	· •
G4	[0,10000]	10	-	-	L4	400	30	[0,400]	1-30
G5 (Wind)	[0,2000]	0.01	-	-	L5	200	25	-	(+

Allow the FFR resources to provide frequency service will increase the price elasticity.

- When L4 increases its bid from \$1/MW to \$17/MW, the resulting price mitigation effect is diminishing.
- The cost for L4 to provide FFR increases to a certain point, the revenue it receives for providing FFR can no longer offset the additional payment made to purchase energy.

FREENTS CENTER

Any Questions?

