

Electric Grid Modernization Enabled by SiC Device based Solid State Transformers and Innovations in Medium Frequency Magnetics

Dr. Subhashish Bhattacharya

Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC

> FREEDM Annual Meeting April 11th, 2019

Contents

Introduction

Solid state transformers (SST) as an enabler for the new grid

2/31

- □ SST examples and Design challenges of SSTs
- Magnetics requirements for MV high frequency transformers (HFT) for SSTs

□ Conclusion

Introduction

Traditional Power System

PNuclear Solar Peaker QCoal QWind QHydro Storage Local Wind 9 Substation 1 Substation 2 . Distribution Transformer Solar Appliances: Appliances: LED & Refrigerator Induction CFL Stove etc. Lights Consumer Electronics: Refrigerator TV, Laptop etc. etc.

Replacing 60 Hz Transformer

- Complex large no. of variables
- Limited scope for control
- Non-linear loads
 - Harmonics ٠
 - Lagging reactive power

- Penetration of renewables ٠
- Power electronic converters
 - dc-ac
 - ac-ac

- Increased controllability ٠
 - **Energy Control Center**
 - Solid State Transformer
 - **Power Electronic** • Transformer
 - Intelligent Transformer

Modern Power System

Medium Voltage DC Microgrids

DC Micro-grid Application

DC micro-grid interface with DABs

Solid State Transformer Technology

Conventional Distribution Transformers

- Bulky in size and weight
- Unidirectional power flow
- No solution for improving power quality
- Improper voltage regulation
- Lesser flexibility in control
- Cannot connect asynchronous networks
- Complex integration of renewables and DESD

• Solid State Transformers (SST)

- Smaller in size and light in weight
- Bidirectional power flow
- Improves power quality
 - UPF operation
 - Harmonic elimination
- Better voltage regulation
 - Reactive power compensation
- Flexibility in control
- Renewable integration
 - ac and dc links
- SiC devices

NC STATE UNIVERSITY

- Improving efficiency
- Lesser cooling requirements

FREEDM SST

Work done at FREEDM Systems Center on Single Phase SSTs using HV SiC MOSFETs

NC STATE UNIVERSITY

Conventional Distribution Transformers^{6/31}

Transformer Core Physical Dimensions 1MVA, 15kV:480Y/277V

Frequency	Mass lb (kg)	Volume f ³ (m ³)
60 Hz	8,160 (3,700)	169 (4.8)
400 Hz	992 (450)	125 (3.54)
1 kHz	790 (358)	101 (2.86)
20 kHz	120 (54.4)	0.5 (0.14)
50 kHz	100 (45.4)	0.5 (0.14)

SST Topologies Enabled by SiC HV Devices: 15kV IGBTs and MOSFETs, 10kV MOSFETs

15 kV SiC IGBT & 15 kV SiC MOSFET Modules

15 kV SiC IGBT (single chip) co-pack module

15 kV SiC MOSFET(Two chip) co-pack module

10kV SiC MOSFET Co-pack Modules

Single 10kV SiC MOSFET Module

Solid State Transformer: Gen-I and Gen-II

Gen-1 SST

NC STATE

UNIVERSITY

Gen-2 SST

	High Voltage Side	Low Voltage Side	
DC-bus	3800 V	400 V	
Current at maximal load	2.66 A	25.27A	
Power	7 kW		
Turns ratio	9.5:1		
Switching frequency	3kHz, 20kHz		
Phase Shift	pi/ 6 ~ pi/ 4		

	High Voltage Side	Low Voltage Side	
DC-bus	3*3800 V	400 V	
Current at maximal load	3*2.66 A	25.27A	
Power	3*7 kW		
Turns ratio	9.5:1		
Switching frequency	3kHz, 20kHz		
Phase Shift	pi/ 6 ~ pi/ 4		

NC STATE UNIVERSITY

Transformerless Intelligent Power Substation (TIPS)

- SiC based solid-state alternative to 60 Hz transformer
- Advantages Controllability, Bi-directional Power Flow, VAR Compensation, Small Size and Light Weight, Lower Cooling Requirement, and Integration of Renewable Energy Sources/Storage Elements

FREEDER TIPS Converter Laboratory Set-up

1200 V SiC MOSFET Based Low Voltage Side Converter

Single Phase High Frequency Transformer

FREE Grid Connected Converter - Experimental SYSTEMS CENTER Demonstration

FEC side waveforms for 4.16 kV MV ac grid tie operation with 8 kV MV dc bus and 9.6 kW load

FEC grid currents and R-phase pole-voltage

NC STATE UNIVERSITY RY-grid voltage and R-phase grid current

- Ripple in the MV grid voltage is due to converter PWM voltage across the 60 Hz transformer leakage inductance (30 mH)
- Peak current shown is including the switching ripple

FREE Grid Connected Converter - Experimental SYSTEMS CENTER Demonstration

DAB side waveforms at 8 kV MV dc bus voltage, 480 V LV dc bus voltage and 9.6 kW

- All waveforms captured at the HF transformer terminals
- Ripple in the DAB currents is due to the HF transformer parasitics
 NC STATE UNIVERSITY

Solid State Transformers (SST) for Mobile Utility Support Equipment (MUSE)

- Connects 4.16 kV, 60 Hz grid to 480 V, 60 Hz grid with currently at 8 kV high voltage DC link and 800 V low voltage DC link
- High Voltage side converters are $3-\Phi$ 2-level converters, Low voltage side converter is 2-level converter
- High frequency transformer forms $Y-\Delta$ connections for near sinusoidal current.

NC STATE UNIVERSITY

Non-Synchronous MV Microgrid Interconnection

Each GridLink eHouse can be customized for a particular load. The standard 6 MVA e-Houses use a redundant series of 2MVA blocks for converting the power from AC to DC and back to AC. Each package is the size of a shipping container, including two transformers. They are prepackaged and burned in at the factory for easy installation on-site.

16/31

Standard 6MVA AC-DC-AC module Package size of a shipping container Energy flow from multiple sources without requiring utility permits

Modular approach allows new energy to be added in future

- Nonsynchronous interconnection approach reduces the cost and time
- Always in islanding mode due to the DC link, mitigates the AC fault propagation
- Galvanic isolation by step-down transformer rated at 5MVA 27/3.3kV, 60Hz [2]
- High voltage silicon IGBTs in power stages

[1] Pareto Energy, Microgrids for data centers, Available online 2018 <u>http://www.paretoenergy.com/whitepaperfiles/PresentationParetoEnergyMicrogridsForDataCentersWebPageVersion.pdf</u>

Medium Voltage Asynchronous Microgrid Connector

Fig. 2: Asynchronous microgrid power conditioning system enabled by series connection of Gen-3 10 kV, 15 A SiC MOSFETs. Intrinsic body diodes of the MOSFETs are used as the anti-parallel diodes.

- **13.8 kV asynchronous grid**, 50Hz or 60Hz; 100kVA bidirectional power flow
- 3L NPC pole realized by series connected Gen3 10kV, 15A SiC MOSFETs
- Intrinsic body diode as freewheeling diode, and 10kV, 15A SiC JBS diode as the clamping diodes
- 24kV DC link, 10kHz switching frequency in FEC and DAB

[3] A. Kumar, S. Parashar, N. Kolli and S. Bhattacharya, "Asynchronous Microgrid Power Conditioning System Enabled by Series Connection of Gen-3 SiC 10 kV MOSFETs," 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, 2018, pp. 60-67.

STEMS CENT

NC STATE UNIVERSITY

AGC Testing Results

Step 1: Selection of the snubber resistor and capacitor values.

Double pulse test with the series connected MOSFETs. Vdc: 12kV, Vgs=20V/-5V.

18/31

0

AGC Testing Results

19/31

Step 4:Three level converter test setup (Single phase with series connection)

Schematic of the Single phase series connection

Experimental setup for series connected single phase leg

NC STATE UNIVERSITY

AGC Testing Results

20/31

Step 2: Half Bridge testing of the Series Connected MOSFETs.

Experimental Results

1000V DC bus voltage, 2.5A peak current, 60Hz fundamental, 10kHz switching frequency

V_{AN} (pole-to-DC midpoint voltage): 400V/div, I_{load} (load current): 2A/div; Time: 5ms/div

High Power Medium Frequency Magnetics for Power Electronics Applications

Sunlamp Architecture

Conventional MV grid connection using low frequency transformer.

Contributions of the Sunlamp Project:

Proposed MV grid connection using isolated power electronic converters and simpler dc-ac converter structure.

- Overall architecture selection and dc-dc and dc-ac converter designs.
- Combining PV and ES on the DC Side with a 3-winding transformer for new topologies and system benefits.
- System level Integration simulation and experimental demonstration
- Advanced magnetic core and high frequency transformer fabrication, design, and testing.

Highlights of the Sunlamp Project

- 10kW, 20kW and 50kW TAB converter demonstrated at NC State University.
- Prototypes designed based Upon 3-Limb and Single Core, 3-Winding Transformers.
- HF Transformer Design, Build, and Test.

Various inductor designs realized for the TAB.

Experimental results from a TAB under test.

A triple active bridge (TAB) integrating PV and an energy storage.

Various transformer designs realized for the TAB.

Efficiency variation with input power at 100kHz

UNIVERSITY

<u>Gen-II SST High – Frequency Co-Axial Winding</u> (CWT) Transformer - Design & Test at 20kHz, 30kW

30cm*17cm*9cm

DC-DC converter of the SST; 30kVA, 20 kHz CWT test - Yellow (Vo) 5kV/div, pink (Vi) 200V/div, green (Imag)**NC STATE**20A/div; Heat distribution after 90 min operation

27/31

FREEDIN

27

Fault-tolerancy Examples in Nature

- Bird flock or school of fish avoid predators by using multiple sensors (eyes)
 One animal can inform other animals by changing direction, forming a virtual single mass body
- Chance of survival for the species is much higher in the synchronization mode than living individually

FREE Implementation of the Proposed Controller

- A hardware test-bed has been developed to test the functionality of the system in real scenario
- It consists of 13 controllers (12 slave and one master) and 3 FPGAs which makes it capable to implement various architectures and gather data in the best format
- Analog inputs have been leveled to match the voltage rating of the controllers
- It is possible to use the controller with hardware in the loop (HIL) simulator and the experimental setup in the lab

FREEDRA Cascaded H-bridge (CHB) Converter (OPAL-RT SYSTEMS CENTER CHIL Results)

Conclusion

- Electric Grid Modernization requires plug-n-play feature provided by SST for integration of renewables, energy storage
- □ Magnetics is the most important component of SST !!!!!
- □ Rich sandbox for research enabled by HV SiC devices
- □ Important to get students educated in SST and magnetics
- □Efficient and reliable MV grid connected converters is key to enabled renewable energy power conversion systems
- □Need to solve practical issues hence industry + academic +
 - DoE Lab participation / collaboration is key

Acknowledgements

31/31

To all my past and present PhD, MS and UG research students and post-doctoral scholars

Thank You!!!

Questions

Acknowledgements: FREEDM Systems Center, PowerAmerica ARPA-E, Navy, DOE and Industry Sponsors Dept. of ECE, NC State University

