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The problem of incident prediction and mitigation response is
not unique to Power systems

* Power system network and
Transportation networks are graphical ==
cyber-physical systems where
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Our approach

* Our approach for working with these graphical networks is to
use a combination of data-driven and model-driven efforts to
create classifiers to detecting anomalies, performing diagnosis
and mitigate cascades.

* | am going to discuss one set of such algorithms from
transportation networks today.



Handling Anomalies in Transportation Networks

* There are limited
emergency
responder
resources.

* How to assign
resources to
incidents.

* Things to consider:

region

Motor Vehicle Incidents over five years in the Tennessee

— Reduce average
response time

There is one
incident every 10

— Decision must be minutes on
made quickly average in
— Legal constraints Nashville
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ldentifying Anomalies In Real-Time
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Roadside Units (RSU): Decentralized traffic management

Definition: Low powered edge devices scattered
throughout transportation network.

Provides various computation services for a collection
of sensors, can communicate with central cloud and

users.

Spare computation capacity on RSU nodes.

Zone: collection of sensors
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Zone Level Anomaly Detection: Q-Ratio

Q-Ratio Definition Detection Threshold
HM nean td
Q — r Qr <, —E€xU,
t T AM, ’ »
HM,: Harmonic Mean at time window ¢ mean td
> 0,
AM, : Arithmetic Mean at time window ¢ Qt Qh,f T € % h,t
t: time window (ie 15, 30 minutes)
€ : Detection threshold
—
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Why Q-Ratio?

° Stable over time
° Invariant to minimal changes in sensor data

° Responds quickly to data-integrity attacks
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—! Estimating Future Anomalies
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Estimating Anomalies in Transportation Networks

Given a finite set of grids over a
geographical region, and a dataset D of
time-stamped incidents.

D: {{X1'W1}' {Xsz}/---f {xn,wn}} where x is
time of occurrence

w, - set of features associated with the it"
incident

=X =X

Past rate of incidents, weather condition in
the area, speed limit etc.

GOAL : Learn a probability distribution
fltw)
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Estimating Anomalies in Transportation Networks

We use survival analysis - a class of methods 10 W €
to find inter-arrival times. g z : /BJ J T

We use Maximum Likelihood Estimation to
estimate the parameters.

L= H h(log(t;) — BW),

However, accidents often cascade and the
survival model has to be updated online.

Solution h (k’) k—ek
— Stochastic Gradient Descent K — €
0
(1 (
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Online Estimation

* Let D’ represent a stream of new pEL . op + aVL(BP D,
incidents. 'B ﬁ “ ('B ’ )

e Assume that 3® is already known.

k
L= log e(IOgTi—ﬁ*W)—e(logT"_ﬂ*w)

* Our goal is to update ° to BP** :

without re-learning the entire =l

model.
* We take gradient steps for each oL k )

parameter based on D’ o5 = Z ~wij + Wl.j{e(logfi—ﬁ Wi)}

fi =
—
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Online Estimation

* Let D’ represent a stream of new Feature

Description

incidents. Time of day

e Assume that 3® is already known.

Weekend
e Our goal is to update 3° to P*
without re-learning the entire Season
model.
Mean
Temperature
* We take gradient steps for each Rainfall

parameter based on D’ Past Tncidents

Each day was divided into 6 equal
time zones with binary features for
each.

Binary features to consider whether
crime took place on a weekend or
not.

Binary features for winter, spring,
summer and fall seasons.

Mean Temperature in a day

Rainfall in a day

Separate variables considered for
each discrete crime grid represent-
ing the number of incidents in the
last two days, past week and past
month. We also looked at same in-
cident measures for neighbors of a
grid.
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Evaluation of Incident Prediction Model

Streaming Surival Analysis - Computation Time Streaming vs Batch Survival Models : Likelihood Comparison
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Deciding Response
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Dispatching Problem

* Given:
— The location of a pending
incident

— Sampled chains of incidents
over time and space

— A routing and travel time
model

— The status, current locations,
and depot locations of all
emergency service vehicles

* Find a near optimal resource
assignment for the pending
incident
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Key State Action Tree: Example
‘RootNode |
t

Candidate Action 0 H tohs E— 3

Candidate State

Artny o -

‘ Stochastic state

* Stochastic Horizon h®

O Deterministic State _ )
* Controls how deep to explore tree while branching

e Once reached, we switch into deterministic mode
 We assume that future rewards are
sufficiently discounted
Stochastic Hodzon * Assume heuristic action (send closest
B = responder)
* Inthisexample h® =3

‘ Leaf State

* For simplicity, assume 3 candidates for
this example

|\' o

o 4
fi & i b
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State Action Tree

Chain 1 Chain 2 Chain k
O O O
00
230 200 250 240 195 310 190 160 230
—_ _
—

(230 +240 + ... +190) / k = 223 L * Average costs for each
| candidate action across

e Choose the action with

the minimum average
cost

(250 +310 + ... + 230) / k = 265

=,
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Tree Search Hyper Parameters

* Important: efficient exploration of the search space
— Must run in (soft) real time
* Hyper parameter review:

— Simulation budget: How many trees to build in parallel to combat
on model variance

— Candidate Action Factor: How many actions to explore at each state
within the stochastic horizon

— Stochastic horizon: how deep in the tree to explore before
switching to heuristic actions

— Discount factor: how much to discount future rewards; ensures
rewards goto 0

—
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Concluding Remarks

Negatively Impacted Incidents

Positively Impacted Incidents
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* Traffic accident data from Nashville, TN
— Training data: 12 months (9345 incidents)
— Testing data: 2 months (1386 incidents)

e Tradeoff necessary to reduce average response times
— Some incidents negatively impacted
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Dashboard

PIE CHART - %5 TYPES OF INCIDENTS:

Poortog o regents m
e,

Pie Charts

Hover on top of the pie chart to see more details

Integrated Analytics Dashboard is available on github
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