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Overview

* Building a Digital Grid on Legacy Infrastructure
* Digital Twin — Analytics and Operations
* Clemson in Charleston: Dominion (SCE&G) Energy Innovation Center

* PV Inverter Testing and Model Validation

* BESS Testing and Model Validation

* Digital Twin Implementation — Operating Wind Turbine Drive Trains
* Wind Turbine Validation - Low Voltage Ride-Through

* Conclusions




Building a Digital Grid on Legacy Grid

Long-term financial success and viability of your utility 67%

Future energy industry success, viability and growth 62%
Utility corporate strategy

Customer engagement and brand management
Enterprise-level operational efficiency
Department-level operational efficiency

Short-term financial success and viability of your utility
Regulatory and public relations

Corporate and social responsibility

Environmental objectives

Figure 13: Link between digital modernization strategy initiatives

Key Findings of Survey Report:

* 91% of respondents embracing digital technology for future success of their utilities.

* 23% of utilities reached a level of digital maturity where they are making capital expenditure decisions based
on predictive analytics.

* Inthe next 3 years, 76% of utilities expect to be able to align digital strategy with regulatory policy and fill key
digital roles.

“Building the 21° Century Digital Grid”, Zpryme, 2019 3
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Digital Twin - Analytics and Operations

* Definition of Digital Twin: “A digital representation of the way the various network elements and
participants behave and interact, enabling an infinite range of “what-if?” scenarios to be tested
out.”

* The Result: More accurate forward visibility, awareness and better real-time decisions and
operations. ' S

* Recommendations:
* Don’t reinvent the wheel. Reuse existing trusted models,

but validate them continuously.

Don’t be limited by immediate needs. The more
components and interrelationships, the closer digital

representation of the physical asset.

Update and develop new standards for DER and System Operations

Leverage existing platforms that allow to update or replace models and test new technologies.

Implement good Cyber — Physical Security in Operation Technology

e Use Diiital Twins to make distributed assets visible to sistem oEerators 4
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Graduate Education Program and Power Labs

Energy
Innovation
Center (EIC)
|
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7.5 MW 15 MW Duke Energy T . Cyber-Physical

* Dominion (SCE&G) Energy Innovation Center (EIC)

* Wind

Turbine Drivetrain Test Facilities (7.5 MW & 15 MW)

* Accelerated mechanical and electrical testing in controlled environment.

 Duke

Energy Electrical Grid Research Innovation & Development Center

* eGRID — 15 MW Dynamic grid emulation (steady-state, dynamic, and faults).
 HiL Simulation facility with electrical / mechanical testbeds

* Power related Cyber-Physical Security labs (Planned)

e Current
e Current
e Current

y 3 Faculty, 12 planned in power program (ECE; CS; ME)
vy 30+ Research Scientists, Engineers and Technicians
y 50+ Students, planned 200 as professionals and full-time



7.5 MW and 15 MW Test Benches

7.5 MW Test Bench Performance Specifications

Test Power 7,500 kW
Maximum Torque 6,500 kNm
Maximum Speed 20 rpm
Inclination 4°t06°
Static Axial Force 1+ 2,000 kN
Static Radial Force + 2,000 kN
Static Bending Moment + 10,000 kNm

15 MW Test Bench Performance Specifications

Test Power 15,000 kW
Maximum Torque 16,000 kNm
Maximum Speed 17 rpm
Inclination 6°
Static Axial Force + 4,000 kN
Static Radial Force + 8,000 kN
Static Bending Moment + 50,000 kNm



15 MW Power HHL Facility

15 MW HIL Grid Simulator

WT-DTF Utility Bus _(23.9 kV)
“%“C WT- DTF Main Switchgear

Grid Simulator Switchgear

15 MW WTDTF
Test Rig Switchgear

-----------

15 MW HIL Grid Simulator Performance Specifications

Test Power 15 MVA
45...65 Hz to 400

Frequency range

Hz
Sequence capability 3 and 4 wire
High Voltage Ride Through HVRT 100...145%
Low Voltage Ride Through LVRT 100...0%
Unsymmetrical LVRT yes

Power quality PQ evaluation

yes

Virtual Test Bench Test
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Virtual Test Bench Digital Twin Simulator Specifications

Virtual testing and validation yes
Multi-domain modeling yes
Test protocol verification and optimization yes
Flexible model configuration yes
Uncertainty in analyses reduced
Operator training yes
Students involvement high
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Control C-HIL Setup

* Baseline an IEC 61850 enabled substation
* SEL relays interface with RTDS

* RTDS simulate grid-tie inverters in real-time in a
Controller-Hardware-In-the-Loop (CHIL) configuration




Power P-HIL Configuration
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Power Amplifier Units (PAU)

8 Slices Per PAU
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Open Circuit Harmonic Generation

Phase A: 5% 19", 10% 5"  Phase B: 5% 23 10% 5"  Phase C: 5% 17™" 10% 5th
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Leonard, J., Hadidi, R., Fox, C., “Real-Time Modeling of Multi-level Megawatt Class Power Converters for Hardware-In-the-Loop
Testing,” in Proc. International symposium on Smart Electric Distribution Systems and Technologies, Vienna, Austria, 2015.




2.2 MW Solar Inverter Testing

2.5 MW DC Supply
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* 1000 V class, 2+ MW

* 385V delta w/ MVT to 4160 test bus
UL 1741/IEEE 1547 @ 60Hz

* [EC 62116 @ 50 Hz

* Frequency ride-through

* Voltage ride-through




L-N: 2000 kW, 0.55 Vpu, 67 ms
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Frequency Ride-Through Testing

» Frequency ride-through testing 1s much easier
than voltage ride-through
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Battery Energy Storage System Testing

—1T MW 51




BESS Efficiency Curves
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SOC Modeling and Validation
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Wind Turbine Test-bed Digital Twin

Qy o Approximate location * Torque and speed are
bl SO/ T controlled on opposite ends
of the drive train

e Hydraulic actuators push on
disk to create forces and
moments at hub point




Digital Twin Drive Train Model Topology

Desired Desired Load
Measured

Load
_ Yector

Measured
Speed

Load Vector Command

Generator
Torque Command

Generally three inputs:
* Torque

* Speed

* Main Shaft Loading




Validation: Dynamic Loading

LAU Displacements Test Article Gearbox
| Support Displacements

|—'l'1-st bench —Simpm‘kl

Test Bench —Silnpac:k|

x displacement.

x displacement
o

¥ displacement

v displacemeni

z displacement
o

oL . . . )
50 100 150 200 250

Time [s]

z displacement

Panyam, M., Bibo, A. and Roach, S., 2018, September. On the Multi-Body Modeling and Validation of a
Full Scale Wind Turbine Nacelle Test Bench. In ASME 2018 Dynamic Systems and Control Conference (pp. 0 5 L. 20 25
V003T29A005-V003T29A005). American Society of Mechanical Engineers. L




Case Study: Wind Turbine LVRT

* Low Voltage Ride-Through is an essential feature in all modern turbines to prevent
outages due to voltage drop or grid faults

* |EC standard (61400-21) specifies tests to assess power quality characteristics of grid
connected turbines

* Testing involves tracking a constant speed corresponding to rated power production 80t
and dropping the generator torque for a short period and recovering it 7000
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Case Study: LVRT Emulation

* At the instant of generator torque loss, test bench motor applies a large counter torque

* Large responses observed at main shaft and generator due to torque reversal

Generator and Main Shaft and Torsional Responses
Test bench motor torque
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Conclusions

e Utilities are investing through regulatory process in Digital Grid
technologies.

* Digital Twin models need validation and real-time parameter
verification.

* Examples for validating PV Inverters, Energy Storage System and
Wind Turbine Models for Digital Twins are discussed.

* A Digital Twin implementation is described for the EIC wind drive
train testbeds.

* Need for new and updated interconnection and operational
standards

* Digital Twins important for System Operations and DER Visibility



Thank You. Questions?

Contact: Dr. Johan Enslin

Executive Director and

Duke Energy Smart Grid Endowed Chair
jenslin@clemson.edu; 843-730-5117
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