Enabling a Solid State Circuit Breaker

USING SOLID-STATE CIRCUIT BREAKERS TO REVOLUTIONIZE POWER DISTRIBUTION

Mike Harris Atom Power, Inc.

Enabling an Intelligent Solid State Circuit Breaker

Requires a focus on;

- Safety
- Reliability
- Cost
- Useability

Traditional Circuit Breakers

MV Drawout

Insulated Case

Molded Case (vast majority)

Traditional Circuit Breakers

- Mechanical in nature
- Interrupt rating related to arc chamber capability

WBG Enabled - Digital Device

If you could create an ideal circuit breaker what would it look like?

- Core is a SiC based power module
- Variety of sensing techniques
- Intelligent processing
- Application for user interaction and system visibility

Disruption of Traditional Circuit Breaker Market

Today's Circuit Breaker

100A circuit breaker example

Desig

Solid State Circuit Breaker

Extremely Fast Detection (usec)

100,000 Amp Interrupt Capacity

Arc Flash Energy reduced by 3000x

- Creating a Safer Building -

Product Safety - UL 489

UL 489, Molded Case Circuit Breakers

- Established product safety standard developed for traditional circuit breakers
- Very robust and challenging standard, covers both product safety and performance
- Test developed to address mechanical and thermal breakers
- Standard did not anticipate having a solid state device used to carry/detect current and limit let through current during fault conditions

We are breaking new ground!

Product Safety - UL 489

Test	Description	Comments
X Sequence	 200% Irated, 25C, trip in < 6 min 135% Irated, 25C, trip in < 2 hrs Overload, 600% Irated, 50 cycles, 0.45pf 100% Irated, 40C 100% Irated, 25C Dielectric 	X,Y and Z sequence are rigorous test suites
Z Sequence	 200% Irated, 25C, trip in < 6 min Interrupting 200% Irated, 25C, trip in < 6 min Dielectric 	
EMC	IEC 6100-4-2(ESD), IEC 61000-4-3(radiated immunity), IEC 61000-4-4(transient), IEC 61000-4-5(surge), IEC 61000-4-6)(conducted immunity), CISPR 22 (radiated emissions)	Robust EMC test suite

Product Safety - UL 489

Considerations that are unique to a SSCB

- Forced air cooling not supported
- Surge and fast transient testing configuration does not represent end unit installation
- Rigidness in interpretation of the standard

UL 489 is critical but not sufficient to assure reliability of product

Reliability Through Intelligence

- Tight coupling between hardware and firmware
- Settable trip points
- Voltage, current and frequency measurement capability
- Built in redundancy and fault diagnostics

Reliability Through Intelligence

- Safety approved firmware self test libraries
- Self test runs in conjunction with real time control code
- Power on self test
- Memory built in self test

Product Cost

- Disproportionate cost allocated to SiC Modules
- Expect SiC modules to have accelerated cost reduction path compared to electrical and mechanical components.
- Focus on critical arc flash reduction applications
- Consider applications where circuit breaker combines functionality not possible with traditional circuit breaker

- Visibility of System Status
- User Control and Freedom
- Match Between System and Real World
- Recognition Rather than Recall

Sample of Jakob Nielsen's general principles for interaction design

- Match look of breaker panel
- See status of individual breakers within the panel
- Panel and breaker naming
- Ability to dive into each breaker status and settings

- Match look of actual breaker
- TCC curve that is familiar and easy to understand
- Adjustable TCC curve
- Ability to coordinate protections within a building

- Event log maintained
- Historical record of state changes, faults, and breaker setting changes
- Comprehensive suite of fault reporting

Our Space (today)

Circuit Breakers

3-phase & 2-pole 480VAC 208VAC

for commercial & industrial buildings

Atom Power Products

Atom Panel™ (Aggregator)

Atom Switch™ (Circuit Breaker)

Atom OSTM (Interface)

A Summary of things the Atom Switch can do...

- Arc flash mitigation (low impedance faults)
- Destructive short circuit hazard mitigation
- Ultra fast circuit protection µs round trip fault detection and circuit opening in an instantaneous trip scenario.
- 100,000-amp interrupting capacity
- Remote operation each Atom Switch is remotely controllable through Atom OS™ or through your own inputs into the Atom Panel (sensors, contacts)
- Dynamic time-current curve adjustment of each Atom Switch from 15-100 amps
- Surge Protection
- Thermal memory
- Remote firmware update capability
- Easily networked with one (1) IP address for the whole thing

- Motor soft-starting capability with ramp-up and ramp-down time adjustable from 1-30 seconds
- Integrated metering:
 - Volts
 - Amps
 - Power
 - Temperature
- Integrated relay functions:
 - Under/over voltage protection
 - Under/over current protection
 - Under/over frequency protection
 - Phase loss protection
- Power flow scheduling through Atom OS
- Autonomous each Atom Switch has its own firmware, enabling autonomous, fail-safe operation
- Integral lockout/tagout air gap mechanism for maintenance

Atom Switch™

Solid-state Circuit Breaker

Intelligent & Self-aware

Dynamic

Safer than anything in the world

Help make the world a better place

Designed & Built in Charlotte, North
Carolina
www.atompower.com

