FREESTA SYSTEMS CENTER

FREEDM Center Overview

Iqbal Husain NC State University April 11, 2019

FREEMS CENTER

Electrification Revolution

2008: FREEDM ERC established with a vision is to create the **Energy Internet** that allows **renewable energy, storage & usage** to be **added** and **controlled** seamlessly in **power system**

Emerging Technologies and Trends

Microgrids vs Macrogrids • DC vs AC • Energy Analytics • Transactive vs Fixed Rates • Wide Bandgap Semiconductors • Electric Transportation

FREEDM's First Decade

Our First Decade

- Maintaining High Quality Research through Sponsored Research Funding
- Maintaining and Growing a Highly Competitive and Diverse Student Body
- Faculty Additions

TEMS

CFN

- Infrastructure Growth: Enhanced capabilities
- Education Program: Programmatic and staff supports through institutional commitment and industry support
- Industry Program: Assessing the value proposition through active engagement

FREENS CENTER

FREEDM Facilities

Power Electronics Packaging Lab

MV Power Electronics & Systems Lab

Electric Drives & Machines Lab

Chassis Dynamometer Lab

FREEMS CENTER

System Testbeds

- Green Energy Hub Microgrid Testbed
 - 12.47kV, 1MVA distribution
 - 40kW Rooftop solar
 - EV Chargers
 - Programmable Loads
 - 280kW/1kWh NEC battery energy storage*

FREEDM SST Components

- LV Multi-SST Residential Microgrid
- Gen 4 SST*
- 50kW fast charger
- 350kW fast charger*

Residential Multi-SST Testbed

Residential Multi-SST enabled three AC-DC hybrid microgrids

Hardware-in-the-Loop Testbed

Distributed Energy Resource Management (DERMS): Above & Beyond IEEE 1547

- Provide ancillary services such as voltage regulation, fast primary frequency response, inertial support, compliance to secondary frequency regulation dispatch at grid edge
- Nested Microgrids

SYSTEMS CENTER

Integration of new equipment and functionality into legacy systems

FREEDM: Education, Industry and Research

FREEMS CENTER

Power & Energy Faculty

Power Electronics & Electric Transportation

Dr. Iqbal Husain Electric Machines Renewable Energy Electric Vehicles

Dr. Srdjan Lukic Wireless Charging Motor Drives

Dr. Jayant Baliga Power Semiconductor Devices

Dr. Mesut E Baran Power Systems Renewable Energy Systems

Smartgrid and Modern Power

Systems

Dr. Aranya Chakrabortty Power Systems Stability & Controls

Dr. Wenyuan Tang Energy Markets Renewable Energy

Dr. Subhashish Bhattacharya Power Electronics High Power Converters

Dr. Doug Hopkins High Performance Power Electronics & Packaging

Dr. Wensong Yu Power Electronics High Frequency Converters

Dr. Ning Lu Power Systems Smart Grid

Dr. David Lubkeman Power Systems Protection and Renewable Energy

Dr. Leonard White Power Systems Protection and Professional Eng.

FREEDAW SYSTEMS CENTER

Education and Workforce Training

- 202+ PhD students and 176+ Master's students graduated so far
- Three NSF graduate student fellowships in recent years
- Students are attracted due to the faculty, programs, and facilities
- Robust Education program including pre-college and undergraduate training; Largest number of undergrads follow the power track

Dr. Pam Carpenter

Megan Morin

FREEDAT SYSTEMS CENTER

Value Proposition

- Innovation: New ideas in our areas of expertise
- Collaboration: Universities, companies, and centers
- **Talent:** Graduates make excellent new hires
- Infrastructure: Members valued the physical assets available through their membership
- Thought Leadership: Engaging industry in promoting and refining the FREEDM innovations

Ken Dulaney Industry Director

Terri Kallal Industry/Education Coordinator

FREEDAW SYSTEMS CENTER

FREEDM Research Areas

4

First FREEDM Annual Symposium

FREETrends in MV Power Electronics: HigherSYSTEMS CENTERVoltage SiC Semiconductor Devices

Reference: MV WBG Power Electronics for Advanced Distribution Grids, NIST/DOE Workshop, April 15, 2016

FREE Trends in MV Power Electronics: SYSTEMS CENTER Reduced Stage of Power Circuit Topology

 Evolution from three stage AC/DC=>DC-DC=>DC-AC power conversion to fully-functional single-stage AC-AC/DC power conversion

FREEDAN SYSTEMS CENTER

Gen-4 Solid State Transformer

7.2 kV AC, 240 V AC/400V DC, Single-stage, Si/SiC Estimated efficiency 97.5% AC-AC/DC@10 kW Bidirectional power flow

Gen-2 Medium Voltage Fast Charger 12.7 kV AC, 800V DC, 3-phase, 3-stage, 10 kV SiC Estimated efficiency 98.7% @ 350 kW Unidirectional power flow

Gen-1 Medium Voltage Fast Charger

2.4 kV AC, 250-450 V DC, Three-stage, commercial SiC Efficiency 97.7% @ 50 kW Unidirectional power flow

FREEDM Inspired SST Initiative: Solid State Power Substation

	Defining Functions and Features
SSPS 1.0 25 kVA – 1 MVA Up to 34.5 kV	 Provides reactive power compensation Provides voltage and frequency control Capable of bi-directional power flow Allows for multi-frequency systems (i.e., AC and DC) Capable of riding through faults and disruptions (e.g., HVRT, LVRT)
SSPS 2.0 25 kVA – 100 MVA Up to 230 kV	 + Capable of serving as a communications hub + Enables system coordination of fault current and protection + Provides bidirectional power flow control between transmission and distribution + Enables distribution feeder islanding and resynchronization
SSPS 3.0 All Power Levels All Voltage Levels	 + Distributed control of multiple SSPS for global optimization + Autonomous control for plug-and-play features + Provides black start support and recovery coordination + Enables fully decoupled, asynchronous systems

SYSTEMS CENTER

SST-Based FREEDM System

- Coupling on the DC bus
- Fewer conversion stages; centralized storage
- SST+DESD managed by utility
- Transition between grid-tied/islanded modes controlled at single node (SST)
- Distributed control (e.g. DC bus signaling) for power balance; no need for high-bandwidth communication link
- Customer: More reliable power at lower cost and less investment
- Utility: Load peak shaving, better control over renewable integration and easier way to integrate storage

DC Service with EV Charging Station

FREEMS CENTER

FREEDM Vision Project

Power Distribution with Solid State Transformer Extreme Fast Charger with MV-SST: 3-Year Project

FREEDIN SYSTEMS CENTER

System Controls

SiC Active Harmonic Filter

- ✓ 150 A (125 kVA) AHF with interleaving
- ✓ Peak eff. > 98%; switching freq > 50 kHz
- ✓ Four-quadrant operation capability with up to 51th harmonic cancellation and THD < 5%
- ✓ 3.4kW/L Power Density
- ✓ Cost: Si solution- \$4964; SiC solution- \$3973

Virtual Oscillator Based Mirgrogrid

- Virtual oscillator control (VOC) is at least an order of magnitude faster synchronization and power sharing compared to droop control
- Secondary voltage and frequency regulation method in islanded mode
- Grid synchronization for seamless transition between grid connected and Islanded
 - Tertiary level power flow control at grid edge/point of common coupling (PCC)

WBG Power Electronics

30 kW SiC Vienna Rectifier

30 kW, three-phase, three-level Vienna PFC Evaluation kit for Microsemi completed in 3 months 2.2 kW/L, air cooled; 98.5% Efficient

135kW SiC Boosted EV Traction Inverter

135kW peak, 100kW continuous power 300-600 VDC input, 800-1000V DC-link, 300A input current; 19.3 kW/L power density; 99% Efficiency

160kW SiC Non-Boosted EV Traction Inverter

160kW continuous power; 800 V DC-link 50kW/L power density; 98% Efficiency

FREE SYSTEMS CENTER

Electric Machines and Inverters Design Trends: Increase DC-link Voltage, and Machine speed

High Pole Design

- Increases torque density
- Reduces end turn length
- Reduces cost of PMs

High Speed Design

- Increases power density (T∞D²L)
- Reduces system mass

Adoption of Hairpin Winding

- Increases efficiency
- Improves torque-density
- Improves overload capability

Reduced RE or Non_RE Machines

Wide Band Gap (WBG) Drives

- System power density increase
- Better current regulation
- System efficiency increase

$$\begin{array}{c} (P_{den} \uparrow) \\ (T_{den} \uparrow) \end{array}$$

FREE Design Methodology/Workforce Training

FREEMS CENTER

Interior Permanent Magnet Machines

High speed (> 18,000 rpm) with asymmetric bar and power density >45kW/L Fractional slot and Integer slot designs with low torque ripple

Lightweight Slotless Electric Machine

0.5kW slotless PM machine for drone propulsion Slotless stator and Halbach rotor Power density at 5,000 rpm is 1.40 kW/kg using *Al* conductor and volume density is 5.0 kW/liter

Transverse Flux Direct Drive Machines

Modular design addressing manufacturing complexity NdFeB-based TFM achieved 89.5% peak efficiency and 14.2 Nm/L torque density with power factor above 0.7 FS-TFM achieved 7.7 Nm/L with 0.5 power factor