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New operations and market problems
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Different ways of balancing supply-demand
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Roadblocks to prosumer integration
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Challenges and opportunities®

**Technical challenges: Design high tech operating technology (OT)
and integrate it with information technology (IT) to enable energy
services: efficient in normal operation; reliable/resilient during
extreme events (disasters, cyber-attacks).

“*Business challenges: No legal, political nor economic incentives
for investment in OT/IT for secure and reliable energy services.

*** Technical opportunities: Major innovation, high tech jobs.

“**Business opportunities: a) for utilities (high tech energy services
business at value); b) for vendors (massive development and
deployment of OT/IT infrastructures; c) for electric energy users
(energy services at value).

*Ilic, Marija, Toward a Unified Modeling and Control for Sustainable and Resilient Electric Energy Systems, Foundations and Trends in Electric Energy Systems,Vol. 1, No. 1 (2016) 1-14, DOI 10.1561/310000001 I I i I_



Emerging needs

** New architectures (nested, multi-
layered)

¢ Operations and planning — data-
enabled interactive decisions Multiple
heterogeneous decision makers
(physics, sub-objectives);

** Multiple granularity, temporal and
spatial; intermittent

** Need for decision tools at different
system layers and for their interactions
over time and geography

¢ Lack of well-defined protocols for
supporting this process

** Lack of provable software algorithms
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Basic questions: Managing complexity in a provable way

*»*Distributed algorithms with minimal coordination

**Distributed algorithms which internalize heterogeneous physics;
multi-temporal decisions; uncertainties;

*** Minimal coordination for near-optimal system level outcomes that
accounts for static grid nonlinearities

**Many answer exist under specific assumptions and for specific grid
architectures

***Specific to particular use (dispatch; grid management)

**Open question: Can one unify/manage complexity for the general
case of non-linear meshed networks with many heterogeneous
dynamic decision makers?



Opportunities

“**Pro-active use of on-line data for enhanced performance at value

--Highly dynamic distributed complex networks with many decision makers
--Dynamic Monitoring and Decision Systems (DyMonDS) (Next generation SCADA)

» Efficient supply-demand balancing and delivery in normal operation

--From off-line worst case reserves to on-line data-enabled flexible utilization
--Interactive power balancing, incl. EVs; Key role of data-enabled delivery (grid control)

» Efficient management of uncertainties in extreme conditions

--Graceful degradation of service instead of wide-spread blackouts [6]

--Resilient service during extreme events



NEXT GENERATION SCADA—
Dynamic Monitoring and Decision Systems (DyMonDS)
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Challenges—It may not work!
**Sensing, communications, control technologies mature

**Missing piece of the puzzle: Integration framework for
aligning end users, resources and governance system

***Multi-layered interactive data-enabled (Internet-like)

protocols

-- Highly distributed decision makers
--Minimal coordination of interactions

***Design and demonstration of end-to-end next generation
SCADA (DyMonDS); co-design on today’s BPS SCADA



Back to basics--Overcoming complexity by
systematic modeling

“*Functions of distributed decision makers as well as the
objectives of higher level aggregating entities can be
established using a unifying modeling energy-based
framework.

***An outgrowth of specifications/standards used today for AGC)

“**Possible to operate the system by specifying performance in
terms of ACE-like variables, now for all iBAs and over a stratum
of temporal horizons.

**The technical challenge: Extension of ACE



Unifying energy-based modeling of dynamics

**Component level (module, S within the SoS)
‘*Interactive model of interconnected systems
*Model-based system engineering (MBSE)—

--multi-layered complexity

--component (modules) — designed by experts for common
specifications (energy; power; rate of change of power)

--interactions subject to conservation of instantaneous power
and reactive power dynamics; optimization at system level in
terms of these variables

--physically intuitive models

Ili¢, Marija D., and Rupamathi Jaddivada. "Multi-layered interactive energy space modeling for TH=
near-optimal electrification of terrestrial, shipboard and aircraft systems." Annual Reviews in Control (2018). I I il



Component-level model in energy space*

Definitions:
Interaction model:
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MBSE in energy space --Multi-layered interactive
model

Interaction model: Interaction model:

p;i = 4E;; —
1 Ei |
P H ()

X J.ff
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Optimization in energy space

***Optimization problems for coordinating iBAs become linear
convex optimization problems in the energy space

***Optimizers (aggregators, 1ISOs, markets) to find the best values
from the range specified by the iBAs.

“*Win-win protocol

*** The protocol is a win-win protocol, since all entities operate
within the ranges they selected. If it is not possible to find
feasible soluthese primal-dual optimization protocols in energy
space can be mapped into corresponding pricing.
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Dynamic Monitoring and Decision Systems (DyMonDS)--
ALIGNING ARCHITECTURE AND OPERATING PARADIGM

Multi-layered modular interactive modeling, simulation and
cyber design framework.

In terrestrial power systems this means having smarts
embedded in very complex loads, wires, storage, power plants,
and having minimal coordination of energy/power/rate of
change of power dynamics monitored/control at the interfaces

of layers.

“** Azores Islands project (long-term cost effective, near-zero
emission systems) —Springer book UHs



Aligning physics and dollars (markets)
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Embedded lIoT/ML/Al computer platforms?

ECE/CS PROBLEM:
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lllustration:ITenabled approach to prosumer participation

*» Common energy-based modeling of  [Understood by
heterogeneous prosumers engineers and

economists !

< Unified specifications
- For operations: (E,P, P)T triplet for operation

* For markets: Bids for each of the triplet A(E, P, P)T

s* Modeling and control for implementing prosumer
specifications

s+ Signals for markets and operations aligned!



Technology for implementing prosumer bids

* End requirement:

> )_ Hot water flow
| Thermal/ stored energy in

water
BATTERY STATE OF CHARGE
Electrical ’_ﬁ N e End requirement:
Power 7 / s | SOC sufficient for the ride
Input P [owers 10
<msl% Chemical/ Electrical
energy
- £L > - _ End requirement:
" ~ | Hot/cold air
Thermal/ stored energy in
alr

Different energy domain makes modeling for assuring provable grid side performance while
satisfying end-use requirements a difficult task! I




Energy-based interactive multi-layered modeling
approach
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shipboard and aircraft systems. Annual Reviews in Control. I I I I I



Generalized droops for defining device-level energy flows
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Possible only through
advanced internal

P[k + 1] — P[k] — O'(W[k + 1] — W[k]) controllers

Popli, N., Jaddivada, R., O’Sullivan, F., and Ili¢, M.D., 2018. Harnessing Flexibilities of Heterogeneous Generation and Controllable Demand
Technologies in System Operation, (To be Submitted to IEEE Transaction on Power Systems) I




System level Multi-temporal and Multi-spatial Information
Exchange Architecture
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Information exchange within and across
prosumers — Approach 1

NODES as a Master Controller

Complex optimization
solved through MINLP or
gueuing theory based

Simplifications:

* Relaxation

e Empirical DER models
and approximations

Most Common Approach

Tertiary Control
Binary signal [p]

Measurements [p]

Mkt Interface

BBB

Ctrl Interface

e

Controllable
DER

Measurements [»]

Sensor -

Implications (Technical):

* Committed market signals may
not be guaranteed

* DER may not be able to
implement

Implications (Economic):
* NODES — Price Maker
* DER- Price Taker

Issues w.r.t meeting specifications:

* Fastest time scale platform
implementations

* Complex problem at NODES




Information exchange within and across
prosumers — Approach 2

Slower signals relevant for
NODES as a master Controller with DER markets realizable

physics internalized

Tertiary control [k]

Secondary control [n] NODES Implications (Technical):

* NODES can count on DER’s SRR provision
* Solving problem still complex —
contradicting constraints

|

| Evaluated Made possible through

| OQutputs - Comfort advanced controllers

I L] Implications (Economic):

I e e e e m— e - * NODES — Price Maker

Mkt Interface I Controllable | |« DER- Price Taker — no incentive for

: BBB I DER | advanced controllers
Fa.sfc sensor measurements| L Ctrl Interface <= ] :- Problems w.r.t meeting specifications:
Ut'“ze_’d to Fgmpensate * Fast primary control may result in
non-linearities ontrol Sensor saturation

) Measurements [7]




Information exchange within and across
prosumers — Approach 3

DyMonDS-

NODES and DER
distributed decision
makers

Market Interface of BBB
now is involved in DER
decision making

Slower signals
relevant for markets
realizable

Tertiary control [k]

Secondary control [n]

Evaluatede —m = =
IOutputs - Comfort

Ik]
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— I DE'I_R _
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Sensor

Implications (Technical):

* NODES can rely on DER’s SRR provision

* Simplest problem posing at NODES due to
decision making embedded in DER

Implications (Economic):

* NODES - Price Maker

* DER- Price Maker - Explicit economic
signals for advanced controllers

Problems w.r.t meeting specifications:
Poor predictability of consumptions over faster
time scales may cause saturation




Comparison of approaches 2 and 3

Energy dispatch of a group of 10 DERs

; Reserve Capacity Dispatch of a group of 10 DERs
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More granular decision making at prosumer level in approach 3 results in possibly larger reserve
capacity dispatch and more flexibility in energy adjustment schedules of DERs



Different Implementation Platforms

Approach Economic Technical
1 Price Taker Not realizable
2 Price Taker Claiming/ not claiming feasibility
3 Price Maker Claiming feasibility

e DER-specific knowledge and its decisions are critical

 Internalizing fast dynamics at component level is important

* DERS’ opting out explicitly at value in Approach 3 (Inelastic load)

 DyMonDS-based Scalable Electric Power System Simulator (SEPSS) — MIT general cloud

platform




Case Study — Test System

Bulk Power
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provision of regulation reserves




Case Study — Test System
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Results — simulation of market clearing with approach 3 using
Pecan street data
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Results — Example of time-varying bids of HVAC

_— Real Power and reserve capacity bids of HVACs

Marginal Benefit ($/KWh)

0 1 2 - 4 D
Real Power (KW)
Street, P.,, 2015. Dataport: the world's largest energy data resource. Pecan Street Inc.



Results — Dispatch quantities every hour

Energy market dispatch (Every 1 hour)
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Results — Reserve dispatch quantities every 2
minutes

Reserve request tracking

KW

1
—Reserve request signal (AGC) | :

- Reserves Provided
-100 t !

| | l _
8 9 10 11 12 13 14
Time (in hours)



Water temperature
T

128 — | ' 5 T

Results — Individual WH  =f | =5

. 12si- Water Temperature

= 125

and HVAC consumption =

123 |- - = | = =

8 : 10 11 1z 13 14
Time {in haours) .

Water heater Power consumption _ Wate r Heate r eIeCtrlcaI

—ms “ power consumption
0.5
o n | A i L |
a -] 10 11 12 13 14
Time (in hours)
Ajir temperature
T I I [
so - Air Temperature _ =
w 75 [ X —
- | e B WAS B
HWVAC 10
| = No comfort/
8 9 10 11 12 13 14 o o o
Time (in hours)
: | HVAC Powerr;unsumption H\'/AC e|ect1r-ica| Ca paCIty VIOIatlonS
S ivac 1
20
z3f
2
1 [pr——wnn—"" o
1 1 1 I
8 a 10 11 12 13 14 I I I I

S - -l




EV State of Charge
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Findings using MIT SEPSS

 Depending on the available communication infrastructure,
the extent of prosumer participation can vary significantly

* Specifications through real power and rate of change of real
power committed are such that comfort violations do not
occur

* Above factors coupled with advanced primary control
embedded in devices ensures implementable bids

* . Transparent price signals facilitated by temporal and spatial
lifting



Way ahead

“*Huge opportunities for innovation at value

+»*Utilities —enablers of differentiated QoS and differentiated
reliability

- investments in smart switching to enable delivery at value

¢ Challenges and opportunities for /industry university work
-- Embedding intelligence into different layers (iBAs) with well-defined protocols

-- Plug-and-play protocols with minimal coordination
-- Distributed robust software development and integration with existing utility software

--Scalable electric power system simulators (SEPSS) essential (version 1 available)
HIT



Next steps

***|T-enabled engineering for complex socio-ecological systems
(SES); toward autonomous systems

**The main barriers— hard to adopt (very different than
hardware development; or solutions for small confined
systems); hard to understand value of cooperation/interaction

**Key role :Scalable well-structured simulators with visualization

--Demonstrate solutions for aligning markets, technical
solutions and cyber-security (multi-layered, interactive)

--Complex energy systems; autonomous microgrids (ships,
hybrid aircrafts, terrestrial); markets

--Low hanging fruits (PR study; blackouts in US; Azores) nGe
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