FREEDING SYSTEMS CENTER

The Power System Research Group at NC State FREEDM Center

Presented by Dr. Ning Lu

ECE, North Carolina State University

FREENS CENTER

Power Systems Group at NC State

Achievements of the Power Systems Group

7 Faculty

SYSTEMS CENTER

- Offer a full range of power system engineering courses to undergraduate students
- Maintain a Master of <u>Electric Power System Engineering</u> (EPSE) program
- Most of the courses are online
- Short course and tutorials

4 Research Labs

- **GridWrx** (Smart Distribution and MicroGrid)
- Grid Analytics, Markets, Economics, and Systems (GAMES) Lab
- Advanced Diagnosis, Automation, and Control (ADAC) Laboratory
- RTDS (PMU, Wide-area Monitoring & Control)

20+ Ongoing Projects (project volume: 6+ million)

Supports 31 PhD students, 2 post-docs, and 9 undergraduate students

Fully committed to transfer technology to our sponsors

- Patents, software License, Training Modules, etc.
- Software, devices developed are being licensed, transferred, and used by sponsors

Power Systems Research Sponsors

GridWrx Lab

ELECTRIC POWER RESEARCH INSTITUTE

SUNPOWER®

Pacific Northwest

Center for Advanced Power Engineering Research

- Overall Trends in Power Systems Research
- An Overview of the Power Systems Research at NC State
- Future Directions
- Summary of Achievements
- Labs, Facilities and Equipment
- Research Projects and Collaborations
- Future Research Directions

- Generation and Transmission
 - Electricity Market: Non-discriminative right to provide grid services
 - Allow Storage and PV/Wind to provide services
 - Engage Aggregated Customer-side Services
 - Wide-area Energy Management, Monitoring, and Control
 - Synchrophasor Applications
 - Cyber Security, Resiliency

• Distribution

- Microgrid, Distributed Energy Resources, PV integration, Demand Response
- New Operation and Planning methods, Cost-benefit Study
- Resiliency

Load Side

- Behind the meter distributed energy resources
- Data Analytics for customer consumption analysis

FREE An Overview of FREEDM Power System Research

- Generation and Transmission
 - Electricity Market: Non-discriminative right to provide grid services
 - Allow Storage and PV/Wind to provide services
 - Engage Aggregated Customer-side Services
 - Wide-area Energy Management, Monitoring, and Control
 - Cyber Security, Resiliency
- Distribution
 - Microgrid, Distributed Energy Resources, PV integration, Demand Response
 - New Operation and Planning methods, Cost-benefit Study
 - Cyber Security, Resiliency
- Load Side
 - Behind the meter distributed energy resources (storage, electric vehicles, PV, building energy management)
 - Data Analytics for customer consumption analysis (Load Disaggregation, Revenue analysis, customer grouping, etc.)

FREEDM Power System Research Areas

We share the FREEDM mission to develop Generation, Transmission, Distribution, and Microgrid Technologies that can lead to major breakthroughs in:

- Power Grid Simulation and Emulation
 - Both steady-state & dynamic
 - Hardware-in-the-loop test bed
 - Co-simulate Tran.&Dist.&DER
 - Real-time & Faster-than-real-time
- Power System Analysis
 - Wide-area Monitoring and Control
 - Real power & Reactive Power
 - Voltage & Frequency
 - Automated & Optimized Control
 - Centralized & Distributed
 - Cost benefit study
- Cyber security & Resiliency
- Advanced Data Analytics

FREENTER SYSTEMS CENTER

- Generation and Transmission
 - Cyber Security, Resiliency, Real-time Modeling and Control
 - Application of Machine Learning in <u>Wide Area Measurement Systems</u> (WAMS)
- Distribution and Load
 - Data Analytics (Data mining, Machine learning, etc.)
 - Self-generation vs supply-by-the-main-grid
 - Retail Market
 - Economics, utility functions, policy, rates, etc
 - Energy Storage and Electric Vehicles
 - Charging stations
 - New load patterns
- Microgrid

FREEDING SYSTEMS CENTER

4 Power System Research Labs

GridWrx (Smart Distribution and MicroGrid) Grid Analytics, Markets, Economics, and Systems (GAMES) Lab Advanced Diagnosis, Automation, and Control (ADAC) Laboratory RTDS (PMU, Wide-area Monitoring&Control)

FREESCA GridWrx Lab

FREEM

Grid Analytics, Markets, Economics, and Systems (GAMES) Lab

FREE GridWrx Lab: Ongoing Projects and Collaborations

Wenyuan Tang, wtang8@ncsu.edu

FREE GridWrx Lab: Ongoing Projects and Collaborations

Research Project

Mesut Baran, baran@ncsu.edu

David Lubkeman dllubkem@ncsu.edu

Ning Lu, nlu2@ncsu.edu

	-	_	
6	Economical Data-fused Grid Edge Processor (EDGEPRO) for Future Distribution Grid Control Applications	DOE	ABB
7	Enabling high penetration of distributed PV through the optimization of sub-transmission voltage regulation	DOE	PNNL, Duke Energy, GE, VCC Control
8	Developing a Path Forward for the Integration of the Coordinated Real-time Sub-Transmission Volt-Var Control Tool (CReST-VCT) into Energy Management Systems (EMS)	DOE	PNNL &ABB&NCSU
9	Photovoltaic Analysis and Response Support Platform for Solar Situational Awareness and Resiliency Services	DOE	PNNL, Strata, NYPA, Roanoke, OPAL-RT
10	NSF CyberSEEs Type 2: Cyber-Enabled Water and Energy Systems Sustainability Utilizing Climate Information	NSF	
11	Data Analytics Using Advanced Meeting Data	ElectriCities	Utility, Co-op
12	Hybrid Energy Management System Development	Total S.A.	Private Company

Wenyuan Tang, wtang8@ncsu.edu **Sponsor** Collaborator

Sponsors of our Research Programs

GridWrx Lab

SYSTEMS CENTER

Development of a Co-Simulation Platform

- Develop, test, and validate smart grid technologies, resiliency, cyber Security
- Run faster-than-real-time to conduct cost benefit Studies

Co-simulate Transmission-Distribution-DER Steady-state & Dynamic, Multi-rate Power Systems & Power Electronics

RFF SYSTEMS CENTER

Hybrid Real-time HIL Test Bed

Communication Links

External Microgrid Controller and Energy Management Interface

FREEM

Advanced Diagnosis, Automation, and Control (ADAC) Laboratory

SYSTEMS CENTER

Big Picture

FREENTS CENTER

Timeline for Collaborative Distributed EMS

ιA

Ð

¹ Economic Dispatch; ² Networked Control System; ³ Home Energy Management System; ⁴ Micro-Grid Energy Management System

Cyberphysical DC Microgrid Testbed

FREEM

SYSTEMS CENTER

Cyber layer:

Physical layer:

Timeline for Smart Battery Gauge

FREENTS CENTER

Smart Battery Gauge (SBG) Implementation

FREENS CENTER

Facilities at ADAC Lab

- Battery Testing Bench
- Humidity and Temperature Chamber
- PHEV Emulator
- Intelligent Space (iSpace)

FREESK RTDS Lab

FREEMS CENTER

RTDS Lab

Directed by Dr. Aranya Chakrabortty

Associate Professor FREEDM System Center

8 PhD students, 2 postdocs:

RTDS Lab - Ongoing Research

- Wide-area monitoring and control using Synchrophasors
- System identification using PMU data
- Co-design of communication and control for WAMS
- Cyber-security of Synchrophasor applications
- Distributed optimization

FREEM

SYSTEMS CENTER

• Application of machine learning and control in transmission and distribution grids, micro-grid controls

FREENS CENTER

Hardware & Software Facilities:

- Two racks of RTDS
- RSCAD software to develop models in RTDS
- GTAO hardware interface of Gigabit Transceiver Analog Output to generate voltage and current waveforms to the PMUs
- GTNETx2 Gigabit Transceiver Network interface card to communicate with remote station. Multiple protocols (TCP socket, DNP) IEEE 754 floatingpoint and integer type.

PMU – 10 units: 3 SEL-421, 2 SEL-487, 3 National Instruments, 2 ABB

GPS – SEL-2407 Satellite-Synchronized Clock

RTDS set-up with multi-vendor PMU racks

ExoGENI-WAMS Cyber-Physical Testbed

DOE NETL Project:

SYSTEMS CENTER

The RTDS-WAMS testbed has been recently integrated with a local cloud computing network called ExoGENI

Bring Concepts of <u>Cloud Computing</u> and <u>Software</u> <u>Defined Networking</u> into Research of Wide-Area Monitoring and Control with PMU data

Benefits from the physical subsystem

1. Accessing of real PMU measurements due to privacy and non-disclosure issues

2. Not sufficient for studying dynamics of the entire system due to limited coverage

Requirements of the cyber subsystem

- 1. high-speed virtual networking
- 2. high performance networked cloud computing
- 3. virtualization and data management

ExoGENI-WAMS Testbed

- Physical subsystem Hardware-In-Loop Framework (RTDS + PMU-based WAMS)
- Cyber subsystem Networked Cloud Computing Platform (ExoGENI)

WAMS visualization console

- Data analytics on PMU data for wide-area oscillation monitoring, voltage stability, and state estimation (recent project with Duke Energy & SAS)
- 2. Distributed WAMS control using cloud-computing and software-defined networking (NSF, DOE)
- 3. Hierarchical control of frequency and voltage using inverter-based resources (EPRI)
- 4. Cyber-security of wide-area control (CAPER, NSF)

SYSTEMS CENTER

5. Machine learning based hierarchical control (Army Research Lab)

The poster session has included 51 peer-reviewed posters introducing our research results in the following research areas:

- Electric Transportation (13)
- Modern Power Systems (10)
- Renewable Energy Systems (19)
- WBG Power Electronics (9)