

Medium Voltage DC Solid State Circuit Protection

Patrick J. McGinnis PE R&D Project Manager *April 12, 2019*

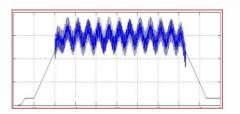
PJM CV

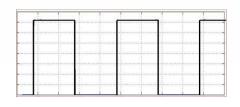
- Aerospace & Defense Industry (RCA, GE, Ford Aerospace, LORAL, Lockheed)
 - Technical Program Management
 - Business Planning & Marketing
 - Business Development
 - Strategic Planning
 - Mergers & Acquisitions
- Navy Machinery Systems R&D
 - Power Semiconductors
 - Power Converters
 - Hybrid Electric Drive
 - Ocean Renewable Energy
 - Solid State Circuit Protection

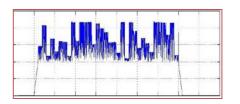
Floating Micro-Grids

Littoral Combat Ship TIGC – 2.3 Mw @ 480 VAC 3Ø

Destroyer II-TIGC – 9 Mw @ 480 VAC 3Ø IIIA-TIGC -12 Mw @ 4160 VAC 3Ø




Aircraft Carrier TIGC – 108 Mw @13.8k VAC 3Ø



Driving to DC Power

Emerging Mission Load Power Profiles

CHARACTERISICS:

- DC Power Based
- Highly Dynamic Load Profiles
- Stochastic In Nature
- Intermittent Usage
- IMPLICATIONS:
 - Highly Stressful to AC Generators
 - Potential Instabilities & Resonance
 - Currently < 1Mw But Will Increase
 - Requires Robust DC Fault Protection

2 Pronged Approach

Generate AC – Distribute DC Supplement w/Energy Storage

Point Source Loads In Zone

- 1kV supply.
- Point source AC conversion as required.
- Point source breakers for coordination & fault protection.

System Wide Zone to Zone

- 12kV supply.
- Traditional zonal architecture.
- Utilize breakers for inter-zonal bus ties and zone isolation.
- Utilize converter current limiting and no-load disconnects for intra zonal distribution protection.
- Switchboard level coordination & fault protection logic.

HVDC Risk Title

DC #01 High Voltage DC Breaker/ Protection and Isolation System

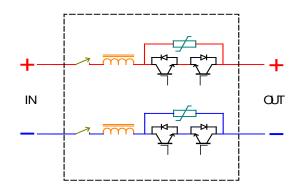
DC Fault Clearing Challenges

- DC fault clearing technical challenges:
 - No zero crossing as in AC systems.
 - High di/dt, values.
 - High magnitude of fault currents.
 - Arc suppression & containment.
 - Voltage spike if arc is not employed to clear fault.

Notional DC Fault Example

Power
 converter
 output bolted
 fault.

- High di/dt.
 - 65A/µs
 - Large filter
 capacitance
 - Rapid rise time
- Ringing on the decay.

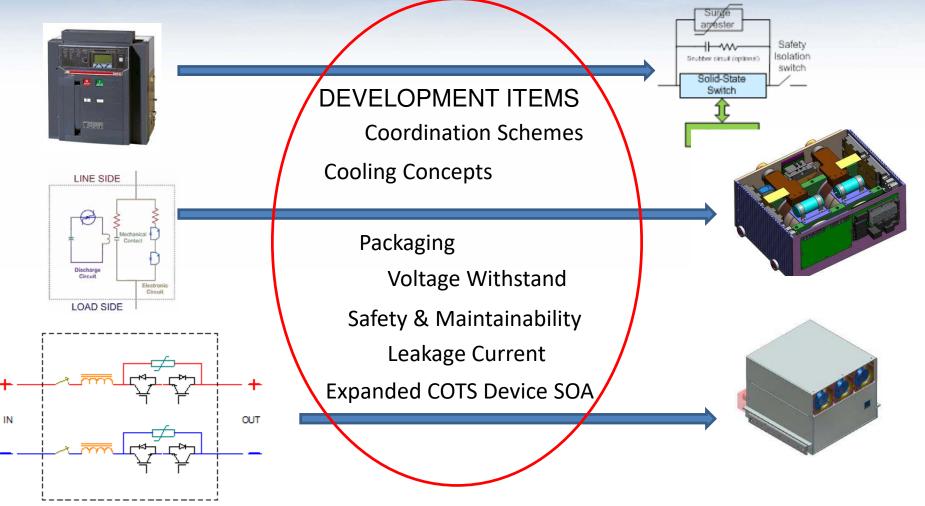

Potential Solutions

Traditional electromechanical

- Hybrid (solid state & mechanical)
- LINE SIDE

 Pure solid state (stand alone or embedded into power converter)

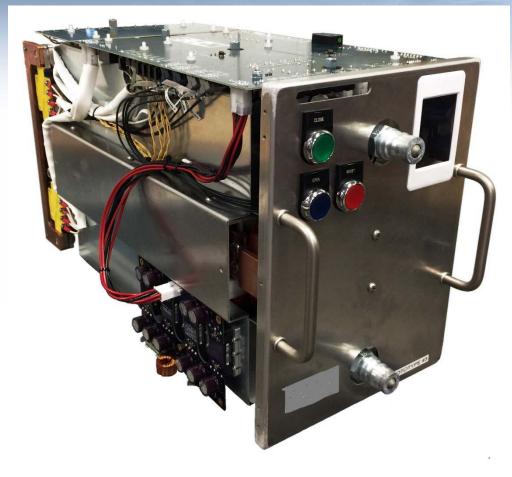
Electro-Mechanical Breakers



- 5000 amps @ 935 VDC
- Big
- Heavy
- Complicated (swiss watch)
- Expensive (\$\$\$\$)
- Long lead time
- Maintenance & Reliability Headache (zillions of moving parts & tight tolerances)

Solving the 1 kV Problem

Develop three independent solutions based on the available options



1 kV Solution Metrics

Attribute / Parameter	Phase 1 Metrics	Note
Response Time (ms)	< 1 ms	Includes detection through complete response
Power Density (MW/m ³)	> 18 MW/m ³	
Efficiency	> 99.5%	Overall device
Maximum Fault Current (Amps)	> 80,000 A	
Continuous Current Range (Amps)	> 1,000 A	
Voltage Range (kVDC)	> 1 kVDC	
False (Nuisance) Trips	< 5%	
Safety Isolation	Open-Dry Contact	
Shunt Trip Capability	Yes	5 - 30 Volt Control signal or Optical signal
Conduction / Break Capability	Bi-directional / Both poles	Both poles need to break full voltage and current
Source Operation	Generators, Converters, Energy Storage	Transformer rectifier, voltage source converter; Batteries and capacitors

1kV Breaker Prototype

- 1000 amps @ 1000 VDC
- Smaller (just)
- Lighter (a little)
- Simpler (a lot)
- Cheaper (\$)
- Shorter Lead Time
- Fewer Components (8 moving mechanical parts)

1kV Prototype Testing

- Voltage Rating
- Current Rating
- Dielectric
- Bi-directionality
- Fault clearing time
- Open on Fault
- Close on Fault
- Coordination
- Loss of Coolant
- 80,000 Amp Fault Current Potential
- Life-Cycle

MEETS ALL REQUIRED METRICS

Moving Forward

- Transition 1kV to shipboard application.
- Finalize development of 12kV 2000A prototype.
- Demonstrate 12kV system level protection.
- Transition 12kV to shipboard application.
- Deploy to next generation of Navy ships.

Future Research Areas

- Wide-band gap semiconductors.
- On state resistance.
- Current sharing among parallel devices.
- Voltage clamping techniques.
- Gate drive synchronization.

QUESTIONS?

Contact Information Patrick McGinnis 215-897-7103 (Office) 215-280-8779 (NMCI Gov't Cell) 215-897-8380 (Fax) patrick.mcginnis@navy.mil