GaN and Ultra Wide Bandgap III-Nitrides for Power Electronics

Spyridon Pavlidis

spavlidis@ncsu.edu

Electrical & Computer Engineering

Outline

- Current GaN Power Devices and Performance
- Technological challenges and opportunities for GaN:
 - Device Passivation
 - N-Polar vs. Ga-Polar
 - Ion Implantation
- Ultra Wide Bandgap III-Nitrides (AlGaN \rightarrow AlN)
 - Device demonstrations
 - Contacts
- Making III-Nitride technology accessible at NCSU

GaN for Power

GaN power device market size split by application (\$M)

(Source: Power GaN 2017: Epitaxy, Devices, Applications, and Technology Trends 2017 report, Yole Développement, October 2017)

- GaN Power Device market size expected to surpass \$400M by 2022
- Compared to SiC's ~\$1B market size in 2022
- **<u>BUT</u>** the GaN for RF market is projected to reach \$1.3B by 2023
- **<u>BUT</u>** the GaN-based optoelectronics market is also growing >\$1B</u>

B. J. Baliga, Fundamentals of Power Semiconductor Devices, 2nd ed. Boston, MA: Springer International Publishing AG, 2019. https://epc-co.com/epc/DesignSupport/ApplicationNotes/AN003-UsingEnhancementMode.aspx http://www.yole.fr/iso_album/illus_power_gan_market_applications_yole_oct2017_updated.jpg

Lateral AlGaN/GaN HEMTs

- AIGaN/GaN heterojunction creates quantum well (2DEG) with high electron mobility
- 2DEG is polarization doped:
 - Spontaneous polarization
 - Piezoelectric polarization
- AIGaN/GaN HEMTs are normallyon devices
- Heteroepitaxially grown on Si, SiC or Sapphire substrates

E-Mode AIGaN/GaN HEMTs

Commercialization Gap

Research

2007

8300V Blocking Voltage AlGaN/GaN Power HFET with Thick Poly-AlN Passivation

Yasuhiro Uemoto, Daisuke Shibata, Manabu Yanagihara, Hidetoshi Ishida, Hisayoshi Matsuo, Shuichi Nagai*, Nagaraj Batta*, Ming Li*, Tetsuzo Ueda, Tsuyoshi Tanaka, and Daisuke Ueda

Semiconductor Device Research Center, Semiconductor Company, Matsushita Electric - Panasonic 1 Kotari-yakemachi, Nagaokakyo, Kyoto 617-8520, JAPAN *Panasonic Boston Laboratory, Panasonic Technologies Company, 68 Rogers Street Cambridge, MA 02142, USA Phone: +81-75-956-9083, FAX: +81-75-956-9110, e-mail: uemoto.yasuhiro@jp.panasonic.com

2006

40-W/mm Double Field-plated GaN HEMTs

Y.-F. Wu, M. Moore, A. Saxler*, T. Wisleder and P. Parikh
Cree Santa Barbara Technology Center, 340 Storke Road, Goleta, CA 93117
*Cree Inc., 4600 Silicon Drive, Durham, NC 27703

Product

50-600V

infineon

A CREE COMPANY

NC STATE Electrical & Computer Engineering

Computer Engineering

UNIVERSIT

2019 FREEDM Research Symposium

AIGaN/GaN HEMT Passivation

- Two challenges:
 - N- bond is less stable than O-bond
 - GaO_x forms on the surface
 - Charged surface states on the surface
 - Transient effects
 - Fermi level pinning

What materials and device fabrication techniques can we use to passivate?

S. Yang et al., IEEE Electron Device Letters, vol. 34, no. 12, pp. 1497–1499, 2013.
H. Sun et al., IEEE Transactions on Electron Devices, vol. 65, no. 11, pp. 4814–4819, Nov. 2018.
J. Gao et al., IEEE Transactions on Electron Devices, vol. 65, no. 5, pp. 1728–1733, May 2018.

10

0.0 500.0 1.0k 1.5k 2.0k

V_{DS} (V)

Temperature Instability due to Poor Interfaces

- Forward bias non-idealities in photolithography-processed SBDs are reduced via anneal
- Shadow-masked contacts show superior reverse leakage performance
- Acid treatment prior to metal deposition yields ideal Schottky diode behavior

P. Reddy et al., "Defect-free Ni/GaN Schottky barrier behavior with high temperature stability," Applied Physics Letters, vol. 110, no. 1, p. 011603, 2017.

N-Polar GaN

Curiosity

Performance

O. Ambacher et al., Journal of Applied Physics, vol. 85, no. 6, pp. 3222–3233, 1999.
R. Collazo, et al., Applied Physics Letters, vol. 91, no. 21, p. 212103, 2007.
S. Wienecke et al., IEEE Electron Device Letters, vol. 37, no. 6, pp. 713–716, 2016.

What about N-GaN surfaces?

Ohmic Schottky 2.6 um N-Polar GaN [4E17 cm-3] 0.6 um N-Polar GaN [4E19 cm-3] 330um Sapphire Substrate 330um Sapphire Substrate			
Step	Sample 1 (Control)	Sample 2 (Treated)	
Ohmic Contact	Shadow Mask (V/Al/Ni/Au)	Shadow Mask (V/Al/Ni/Au)	
Schottky Contact Patterning Method	Shadow Mask	Lithography	
Surface Treatment		Boiling HCI:H ₂ O	
Schottky Metal Deposition	Ni	Ni	D. Khachariya <i>et al.</i> , "Chemical Treatment Effects on Schottky Contacts to MOCVD N-polar GaN," presented at the International Workshop on Nitride Semiconductors, Kanazawa, Japan, 2018.
Lift-Off		NMP (at 70°C) then acetone & IPA	

I-V Comparison

Near-ideal ideality factor via shadow masking

Defective surface introduces non-idealities

We need passivation!

Ion Implantation Technology for GaN

Ar implantation for edge termination

Mg-Implantation for p-GaN

Electrical & Computer Engineering

NC STATE

UNIVERSIT

Ultra Wide Bandgap Semiconductors

Ultra WBG III-Nitrides (AIGaN and AIN) offer the next frontier of power electronics, and are once again supported by optoelectronics applications (e.g., UV water purification)

J. Y. Tsao et al., "Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges," Advanced Electronic Materials, vol. 4, no. 1, p. 1600501, 2018.

Electrical & Computer Engineering HEXATECH

mm grid

Ion-Implanted AIN Channels

M. H. Breckenridge et al., "Electrical and Structural Characterization of Si Implanted Homoepitaxially Grown AIN," in 2018 IEEE Research and Applications of Photonics In Defense Conference (RAPID), 2018, pp. 1–4.

Computer Engineering

2019 FREEDM Research Symposium

AIN-/AIGaN-Channel Devices

Computer Engineering

UNIVERSIT

Passivation of Al_xGa_{1-x}N

• As E_G increases, things become more challenging...

Reddy et al. J. Appl. Phys. 119, 145702 (2016)

Computer Engineering

Electrical &

NC STATE

UNIVERSIT

Fabrication Capabilities

WBG Device Fabrication Course (& Industry Short Course?)

NC STATE
UNIVERSITYElectrical &
Computer Engineering

Measurement Capabilities

DC I-V

Transient 1 GHz BW

High-Power, High-Speed PIV 220V / 2A / 200 ns PW 2kV / 100A / 1 µsec PW

A CREE COMPANY

Summary

- AIGaN/GaN HEMTs are rapidly penetrating the power device market
 - But we are leaving performance on the table (passivation, thermal and reliability)
- NCSU is tackling these challenges from materials to circuits to systems
 - Example: N-polar GaN vs. Ga-polar GaN vs. mixed polar?
- UWBG III-Nitrides (e.g., AlGaN and AIN) are just around the corner
 - We are developing epitaxy, bulk substrates, implantation contacts and passivation
- Can we derive inspiration from III-Nitrides' many uses?
 - Mixed optical/electrical systems for higher-speed and integration

Acknowledgements

Collaborators in NCSU MSE

Zlatko Sitar

Ramon Collazo

Doug Irving

Supported by:

UNIVERSITY

PowerAmerica

Electrical and NC STATE Computer Engineering

Laboratory for Electronics in Advanced Devices and Systems (NCSU LEADS)

PI: Prof. Spyridon "Spyros" Pavlidis spavlidis@ncsu.edu

