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 The system dynamics of the large-scale network e ‘ ’ ik 5
,‘v :.. Ay o,
systems may not always be known s el o g
AN o, "? g 7\ ®
US Eastern Interconnection power grid consists of Toly : BT\ e RN/ ] ?
over 70,000 buses and thousands of dynamic L RN 2. SN T ST
elements ° N
- °
* Most of the designs in the existing literature are & Moo
performed on a relatively small system with known VAWAN'g
dynamics PO TR S
Use measurement-driven approach Approach 1: an indirect control design

with intermediate identification

Controlling inter-area oscillations in

power systems Approach 2: a direct control design
via Reinforcement Learning (RL)

* Motivating example using approach 1 : Measurement-based optimal controller on a practical
full-scale transmission model of New York State grid 4
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Approach 1: Measurement-driven
control of NYS grid
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* Objective: Improve the inter-area oscillation performance pertaining to NYS grid

Offline impulse Controller design

emulation at STATCOM

Simulation implementation
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Coherency of NYS Reduced-order system
erid using PCA identification using ERA
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Approach 1: Control performance UNIVERSITY
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= A Linear Quadratic Gaussian type optimal controller is designed. It is then coded in FORTRAN as a
user written module and linked with PSS/E EI dynamic suit and tested with NYISO specified

contingencies.
Freq. scaling
translates to
X 1 0-4 x 10 A several
: i = : : ' ' ' ' > - - hundreds of
—without controller —without controller MWs of
10 ith troll I 15 —with troll | fluctuations
—_ with controlier — Wwith controller
=1 Marcy bus (cont. A) = 10 Avg. frequency (cont. A) O
O o
o’ o’
— Y
<1 <

> 4 6 8 10 12 14 2 4 6 8 10 12
time (s) time (s)

= We showcase a sequential data-driven damping control design approach on the FACTS facility in NYS
using tools from machine learning, linear system identification and optimal control theory.
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From indirect to direct approach UNIVERSITY
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»  What if operating conditions keep
Indirect on changing?

approach

« New components are integrated
to the system (e.g. DERs for

power grids)
Plant (e.g. power system) l

l Run approach 1 multiple
times

System identification:
« Can we avoid that?

(A,B) dynamic matrices

Model
dependent

Optimal controller solution OO via Reinforcement Learning
O

> Yes, perform direct gain computation

ATP+ PA—PBR'BTP+Q =0

Optimality + Adaptiveness
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* Reinforcement Learning (RL)/ Adaptive Dynamic programming (ADP) is generally used in finding the
feedback gains without explicit state dynamic descriptions

* C(Classically RL has been used for sequential decision making using Markov Decision Processes (MDPs) in
Al community

* However, in the last decade, RL has been used to control dynamical systems
( Vrabie et al., Automatica, 2009, Jiang et al., Automatica, 2012, etc. )

!

Opportunity to design RL controls for power system dynamics

Major challenges : 1. Learning the feedback gain using full-dimensional system increases learning time,
and 2. results in dense feedback control structure

!

One solution — Incorporate the ideas of model reduction in conjunction with RL
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Plant (e.g. power system)
Reward Signals State
ons + States o

Agent

Feedback controller

Barto et al. (2004)
10
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Exploit the structure : reduced-dim. learnin
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« Large-scale physical networks — specific structures in their dynamics

« Power grid is a complex dynamic network which shows coherency/ clustering, resulting in time-scale

separated state dynamics

mathematically represented by singular perturbation theory

« Use the slow states to control inter-cluster oscillations, known as inter-area modes in multi-area power
systems

’
\ _/ / Extracting the . ,'
M\ slow dynamics
using SP-based
\ g

approximation
11
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Mukherjee, Bai, Chakrabortty (2018)

Projection to lower Reduced dimensional
dimensional space | learning of feedback gains

-

y . @ . / Projecting the gains

back to original coordinates

12
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. _ - n m
= " Overall dynamics: X =Ax+ Bu, x(0)=xp,x cR" ucR
Vs LS — V= Auy+ Az + Bu, y(0) = o,
v »?‘? i f, A Underlying two time-scale dynamics: €2 = Aoty + Amz + Bou, z(0) = zg
:' .:o: g »:‘.’
v & 8 Control: u=-M(Ky) without knowing A and B Model-free

Y | - @ Linear
) ) 4_‘: PMU e & . .
J(y(0); 1) = [ (v Qy + " Ru)dt, criterion Quadratic
J0 N Regulator
st. A— BMKC € RHrﬁ\Stab'“ty (LQR)

Ideal slow dynamics Ve = Asye + Bets, ys(0) = y(0), u = us + uy,

e=20
As = Al — ApAntA
Algebraic Riccati Equation: I 11 7 71272 121

- — - - Bs = By — A1pAy,) Bo
Still model-based _
| ATPePAso-REMREMP 0

K =R IMTBIP

13
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Theorem [Kleinman, TAC, 1968]

Let Ky € R™*" be any stabilizing gain matrix, then for k =0,1,. ..
1. Solve for Py starting with stabilizing Kg(Pollcy Evaluatlon) ;

_ _ _ _ _ Model-based
Ag{ P, + PLAqg + Q@ + K;{TRK;( =0,Aq = As — B-MK, iterative solution

o
2. Update feedback matrix (Policy update) o

Kiei = RT'MT B! P,

Then A, — BsMK is Hurwitz and K and P) would converge to optimal K, P.

.

Derivative d =
W (/7 P.y.) = yJ (AL P = PiAd)ye + 2( Kst+U)TMTB Pry

along dt
— },ST ék}’s + 2( R,[qyg + U{] R K k+1Vs ) Eliminate model information

trajectory

using Kleinman’s algorithm

Taking

= - tegral

Trajectory- }”sT(t + T)Prys(t +T) _}"sT(t)Pk}”S(t) —
based

t+T t+T
Data-driven [t / (( Kiys + u(;.] TRK k+1Vs ) dr = — / yST QrysdT L F y,(t) is ideal, and not implementable, so
solution JT Jt replace with y(t)

14
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Algorithm steps:
» 1. Data storage: Store data (y and up) during the exploration phase for
interval (t1,t2,--- ,t),ti — ti_1t = T, where T is the learning time step. The

learning requires r? + 2r2(n = r,m = r) time samples. Then construct the
following matrices,

y,(t) is related to y(t) by

Syy = [}, ® },|f1+T1 y @ y‘rﬁLT} 4 : singular perturbm"ion
- paT T parameter following
t1+ i :
Store fyy — [ f 1 ( y @ y)dT cee fnr ( y @ y) d‘r} : f;%wégokotomc, TAC,
T J
th+T t+T
measurements e = [f Ty @uw)dr, -, [T(ye uo)d’r}

» 2. Controller update iteration : Starting with a stabilizing Ky, Solve for K iter-

atively (k = 0,1,---) once matrices d,,., l,,, I, are constructed and iterative
equation can be written for each small learning steps as,

i i vec( P,
léyy —21,, (1, ® KkTR) — 2y (In @ R}l {VEC(:‘(\’;{ii)} — ffﬁ ver:(Q;{l.

{;‘); b,

Run least-
square

Hence P) and K1 are iteratively solved such that [Py — P, 1| < & Eis a
small threshold.

» 3. Applying K on the system : Next I = —Ky is applied and wug source is
removed.
15
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ettt Theoretical results in a nutshell UNIVERSITY

Sub-optimality theorem [Mukherjee, Bai, Chakrabortty (2018)]
Assuming ||ys(t)|| and ||uo(t)|| are bounded the sub-optimal solutions are given by

P=P+0(e), K=K+ Ofe).

Here ||.|| means the Euclidean norm.

Corollary

The optimal objective value J with y(t) feedback is related to J for the reduced
slow sub-system with y;(t) feedback as,

J:j—|—0(6)

Stability theorem [Mukherjee, Bai, Chakrabortty (2018)]

Assume that the control policy u = —MKyy at the k™ iteration is asymptotically
stable. Suppose that R = 0 and Q > 0 with Anin( Q) is sufficiently large. Then the
control policy at the (k + 1)™ iteration given by u = —MK 1y is asymptotically
stable.

4 16
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» We next consider a simplified LTI

State evolution

clustered multi-agent network with 25
agents divided into 5 clusters

The network has 4 slow eigen-values, one
zero eigen-value and rest are the fast
eigen-values. The slow eigen-values are

—0.128, —0.195, —0.196, and —0.2638.

The control is enabled by
Aggregation-control-inversion architecture

0 5 w 15 W 15 30

Time(s)

Simulations on clustered network

NC STATE

» |t takes at least 18.75 seconds to learn the

Slow states

Slow states

__'_-'_I
L%
f - |
1 1 1 _-'.‘:5
0.5 1 .5 2 2.5 3
Time (sec)
| “!II\‘HA ¥
LWL (II:VHI e
1 ‘-'-_ i 2
0.5 o gy, | 2
Iﬁ L ll'li'""lﬂm". _'l'...',
IJ —llu.
, 45

K € R**2> matrix accurately (atleast
n® + 2mn samples are needed to learn K

here n = m =25, T = 0.01s)

The reduced-order control requires at least
only rZ + 2r% = 75 number of samples,
and for simulation we consider 1.2s for
learning with 120 samples

UNIVERSITY

Increasing

Q

=
| ]
Lh
Lad

| 1.5
Time {sec)

0 0.5

17
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Other design variants
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* Output feedback design using Neuro-adaptive observer

Cluster - 1 o
* Block-decentralized design —) At r@geg]m
St T AR

__________ g' % | Forcluster 1

| ADP Block
33 | Forcluster 3

b
— Strong coupling L ""‘ng‘m i ]
% 1’, 4 u?

--- Weak coupling

* Incorporating robustness to the projection-based RL

18
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Practical large-scale power grid Transmission network and loads
contains hundreds of dynamic . v ¥ —
components (say, n components) &S T me B
W [ O L EE A

71 - 1
I 3 2
I ]
7
# L]
1 |
1
1
! i

Full-scale learning will take long

|

1

i | bse |i| DSE |§| DSE | ‘[ pse |i[ pse || msE |
I ! ] F; I T T
I

(é.i‘,
@

time making it useless —— | | :
g 1 X - _‘L:‘;‘,;I?!/—,f-l-.l i i X L_,Ai;:__ I___::I:r_ru"i )
NG ! i 2 LT I 1
oL P P 1 1 1 H | 1 i i H
\/ Aggregator for et e Control . Coniral
. M.Em 1 inversion for :'ngregat{?r iy inversion for Heprepator far inversion for
o areal - arear
Exploit the clustered nature (say, r avea L area i v..e rear

clusters) to make considerable
faster feedback gain computation

¥ €; ﬁ:-/
L@ e fir
) EL based learning

With r<< n, effectiveness And contral
Increases

» The synchronous generator states can be estimated by Decentralized State Estimators (DSEs) using
the voltages and currents of terminal buses obtained from PMUs

Coherent
clusters

* The controls on the generators are actuated via excitation dynamics

« Along with inertia weighted average of electromechanical states, practical design will also require to
consider inertia weighted averaged excitation states

16
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Key Aspects
SYSTEMS CENTER y p UNIVERSITY

* Transmission model information is not required
* Generator states are estimated locally via DSEs

* Areduced-dimensional RL design that compensates the
projection error

* Faster learning with reduced-dimensional feedback than
full-dim. design

20
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e Voltage and current measurements are e The unscented Kalman filter is implemented
2 x = 1 . - = i - o
generated by adding the white Gaussian in a decentralized fashion for the individual
nolses generating units showing high accuracy
i
Theinm=tacal
ol F B S ——Eslimaied
e
= ash T !
4 H“"-a___
L} = -
""--._\_\_\__
0.5 3 L L
il 2 I H o 12 14 I 18 20
Timed s
| ey Thecretical
099908 | \| N Py
1,002 - f
o E_ 055999 - v LIII'WP_‘U"\.% 1
(A A% 3 (900l - V""\,_:-xm _
- _‘m'ﬂ\'"“‘"‘\
= [F&gga - e
i:—__ | 3R
- 1,002 ”-wmf' 2 4 ] B o 12 14 1¢n 18 20
i Time ()
i 14 .0325 T T T T T T T
e 5 0 15 n - Ay
Timelx) 1032 - \1 =
-8 E __._ T T T T T T T T ;= 1oaiEs k- \ i
o I ____"‘--—______ i o LO3L =1 -
= nat T |
3 — 10505 R, ]
f" oA e 4 i = =
e 103 : ' : ' - ; : : -
pks | 0 2 X i H 10 12 14 T T
b Timed w)
A : . I I1‘ I I|-. I:d 3 ©
L s P B O Performance of decentralized state

21
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Simulations

e The power grid model is excited with
exploration signal with minimal perturbations
—+ the supplementary actuation added at
Vies — improved performances on inter-area

e Here,. n =64, m = 16, and r = 5 — Full
dim. design: rank condition of ©; would
require at-least n(n +1)/2 + nm = 3104 time
samples —more than 31 s (T=0.01 s) of

exploration oscillations and angular frequencies
e However, the projected design needs at-least 3§ [ : ' : ]
4r(4r + 1) /2 + 4rm + 4rp = 1810 samples 23 '%ﬂm |!.L I \ I‘. AANAA f'. A FLI‘ AAAAAAS
without control back projection (i.e., m = 16 3= i ,. i| VY MY Vi VY VY'Y e
and M = I5), and 1590 samples with control % - - | II |
back pr{:-je::*tion (i.e., m = 5) i I . , , o , ,
i 5 1] 15 20 15 30 35 i
=10 , 7 Time 51
i A i = g s —
é_é_] Hlln ( | II I||"'||.| illll — i-a '”""'llll I|‘I Ifll 2 B
B ZE | Wi I-.i&vc::ﬁ; AN T e N
5 : r| |-||J r J,H ||,\|, ‘ ;'u,_,u. I\ l I:@‘Wﬁﬁjﬁw 2o O (U".f-'::l b’ir.;ﬂ.ﬁ.:ll Y v e e
-;;}-' = g'_;.u:--H II.II vV V -
- ﬁ_-. I|I = o !.l
2 =2 .|
1I| z !.‘- = . 5 3 - s 0 I3 :I.u 5 30 P a0
e -_.k_n_x 1o ] - Time (s
| 43 =|"_
o | |_ £ .l
e | — &l =
= i} —_ ‘7: i & i Y
Tl =l - m&u,'ﬁ ’M’J"W .ow%“%WW
-‘:_- i -E".-. | 2
T \ 2| 3 ]‘| |J
] | :_: ..1
“ 5 I‘ 15 = E L L] z s w0 is 20 25 30 3 10 3
I ralton 1t rabon Timeish

Exploration and convergence

Performance improvement
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Decentralized RL on DERs

NC STATE
UNIVERSITY
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Mukherjee, Bai, Chakrabortty (2020)
 Next generation power grid is < Operator doesn't need to know detailed
envisioned to be equipped with DER models in RL based designs
distributed energy resources (DERs) (supplementary design with plug-and-play)

* Decentralized control on DERs helps in ¢ Localized learning reduces exploration time
scalable design and control dimension

Learning Phase

Algorithm 1 Decentralized RL on DERs

Transmission network Fori=n-+1,...,n+mdo

Step 1- Data storage: Store data (y,, V,,, and u,q) for time intervals (t1.t2, - ,;),t,—t,_ =
T with time step T. The total exploration time is T x I. There exists a sufficiently large
number of sampling intervals such that rank(ly,y, lyu,y [y, Vi) = d(d 4+ 1)/2 4+ dk + 2d.
Then construct the following matrices,

4T O . 0 24
Decentralization e = [ Ould™, o meult] (%)
o i ¢ N 1T :
requires DER Ly, = [T @ owdn - [T @evd] (18)
1 ty
computation cnmjurmion termlnal bus ypugg = [Li.ll+T(yr @uyg)dr, - ‘-fa!_.[-‘—Tf\y‘ @ ugg)dr| . (19)
voltages aiT oo T
g Ly vy, = [ ,11 (v ® Vi )dry «-- ~f,![ (3. ® Vi JdrD . (20)
Step 2- Controller update: Starting with a stabilizing Ko, Solve for K, iteratively (k =
. 0,1,---) once matrices dy,y,, Ly u;s Tygugn sy, vy, are constructed by the following iterative
Implementation Phase > : e vy Ly Lugugn s fug Vi
quation
Transmission network [Buiwe  —2lyyu(In ® KJR) — 2yug(In ® Re)  —20y,v,,] x
9-:.'&
Vv, v, A\ vec(Pix)
DER, DE vec( Ky ) | = —lyoy,vec(Qu) . (21)
DER] = SGD Rm L_.t,c{cvr; _prk} \_;._.v
Pk

SGy u1 u, |[EE= " ~ U _ . ) )
M —< EEE Jé P, and K, . ,, are iteratively solved such that [P — P, | < €, € is a small threshold.

This process is performed in a very fast computing platform when the system is under control

- N U = Uyp.
Step 3- Applying control on the system : Next u, = —K,y, is applied and u,; source is
removed.
End For

E
ke
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Concluding Remarks UNIVERSITY

* Measurement-driven designs are discussed using multiple approaches

* RL-based designs are proposed to solve the curse of dimensionality associated with
the learning control design using singular perturbation approximations

* The proposed methodology enjoys faster learning and reduction in feedback control
dimensionality

* Sub-optimality and stability analyses are performed using the singular perturbation
approximations

* Designs can be extended to control oscillations in power systems considering the
projection error in the dimensionality reduction

* Decentralized design on DERs enjoys scalability and modularity along with fast

learning
25
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Moving forward UNIVERS|TY
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* Towards a data-driven decision making for analysis and control of next generation power

grid
* Advances in the computing capabilities involving machine learning and data-driven control
algorithms and the deployment of high resolution measurement devices in power grid make
this union possible
* Inter-disciplinary research areas:
Core subject area : Power system operations, Power Systems Dynamics,
Renewable-integrated power grid etc.
Computing and analytical tools : Convex Optimization, Control theory,
Statistical learning with ML/DL , Reinforcement
learning, Cyber-physical system security etc.
* Research towards an autonomous energy grid where mathematical tools from controls,

optimization, data analytics, etc. all can work together for solving energy problems of the
future
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