# FREEDIVE SYSTEMS CENTER

Structure-Exploiting Reinforcement Learning Control with Applications to Power System Dynamics

Our webinar will begin in a few minutes

### Introduction

#### NC STATE UNIVERSITY

- Welcome
- FREEDM Overview
- Zoom Functionality

### freedm.ncsu.edu



# FREEDIN SYSTEMS CENTER

Structure-Exploiting Reinforcement Learning Control with Applications to Power System Dynamics

Sayak Mukherjee, Aranya Chakrabortty April 29, 2020

Towards data-driven control

Wide-area damping control of power grid



• The system dynamics of the large-scale network systems may not always be known

US Eastern Interconnection power grid consists of over 70,000 buses and thousands of dynamic elements

• Most of the designs in the existing literature are performed on a relatively small system with known dynamics



Use measurement-driven approach

Controlling inter-area oscillations in power systems

Approach 1: an indirect control design with intermediate identification

Approach 2: a direct control design via Reinforcement Learning (RL)

• Motivating example using approach 1 : Measurement-based optimal controller on a practical full-scale transmission model of New York State grid

### Approach 1: Measurement-driven control of NYS grid



• Objective: Improve the inter-area oscillation performance pertaining to NYS grid

SYSTEMS CENTER





### Approach 1: Control performance

SYSTEMS CENTER

 A Linear Quadratic Gaussian type optimal controller is designed. It is then coded in FORTRAN as a user written module and linked with PSS/E EI dynamic suit and tested with NYISO specified contingencies.



We showcase a sequential data-driven damping control design approach on the FACTS facility in NYS
using tools from machine learning, linear system identification and optimal control theory.

**NC STATE** 

UNIVERSITY



## **FREEN** A direct approach via reinforcement learning

- Reinforcement Learning (RL)/ Adaptive Dynamic programming (ADP) is generally used in finding the feedback gains without explicit state dynamic descriptions
- Classically RL has been used for sequential decision making using *Markov Decision Processes (MDPs)* in AI community
- However, in the last decade, RL has been used to control *dynamical systems* (Vrabie et al., Automatica, 2009, Jiang et al., Automatica, 2012, etc.)

Opportunity to design RL controls for power system dynamics

• Major challenges : 1. Learning the feedback gain using full-dimensional system *increases learning time,* and 2. results in *dense feedback control* structure

One solution – Incorporate the ideas of model reduction in conjunction with RL

**NC STATE** 

UNIVERS



Agent

Feedback controller

### **FREE** Exploit the structure : reduced-dim. learning

NC STATE UNIVERSITY

• Large-scale physical networks



specific structures in their dynamics

• Power grid is a complex dynamic network which shows coherency/ clustering, resulting in time-scale separated state dynamics

mathematically represented by singular perturbation theory

• Use the slow states to control inter-cluster oscillations, known as *inter-area modes* in multi-area power systems



Aggregate-control-inversion RL

Mukherjee, Bai, Chakrabortty (2018)



**NC STATE** 

UNIVERSITY

## SYSTEMS CENTER

#### Brief overview of theoretical development



#### 14

### FREE From model-based to model-free formulation

#### Theorem [Kleinman, TAC, 1968]

Let  $\overline{K}_0 \in \mathbb{R}^{r \times r}$  be any stabilizing gain matrix, then for k = 0, 1, ...1. Solve for  $\overline{P}_k$  starting with stabilizing  $\overline{K}_0$ (Policy Evaluation) :

$$A_{ck}^T \bar{P}_k + \bar{P}_k A_{ck} + Q + \bar{K}_k^T R \bar{K}_k = 0, A_{ck} = A_s - B_s M \bar{K}_k$$

2. Update feedback matrix (Policy update) :

$$\bar{K}_{k+1} = R^{-1}M^T B_s^T \bar{P}_k$$

Then  $A_s - B_s M \overline{K}$  is Hurwitz and  $\overline{K}_k$  and  $\overline{P}_k$  would converge to optimal  $\overline{K}, \overline{P}$ .

Derivative  
along the  
trajectory
$$\frac{d}{dt}(y_{s}^{T}\bar{P}_{k}y_{s}) = y_{s}^{T}(A_{ck}^{T}\bar{P}_{k} + \underline{\bar{P}_{k}}A_{ck})y_{s} + 2(\bar{K}_{k}y_{s} + u_{0})^{T}M^{T}B_{s}^{T}P_{k}y \\
= -y_{s}^{T}\bar{Q}_{k}y_{s} + 2(\bar{K}_{k}y_{s} + u_{0})^{T}R\bar{K}_{k+1}y_{s}$$
Eliminate model information  
using Kleinman's algorithm
$$y_{s}^{T}(t+T)\bar{P}_{k}y_{s}(t+T) - y_{s}^{T}(t)\bar{P}_{k}y_{s}(t)$$
Trajectory-  
based
Data-driven  
solution
$$-2\int_{t}^{t+T}((\bar{K}_{k}y_{s} + u_{0})^{T}R\bar{K}_{k+1}y_{s})d\tau = -\int_{t}^{t+T}y_{s}^{T}\tilde{Q}_{k}y_{s}d\tau \longrightarrow y_{s}(t) \text{ is ideal, and not implementable, so} replace with y(t)$$



0

The SP-RL algorithm



#### Algorithm steps:

► 1. Data storage: Store data (y and u<sub>0</sub>) during the exploration phase for interval (t<sub>1</sub>, t<sub>2</sub>, ..., t<sub>l</sub>), t<sub>i</sub> - t<sub>i-1</sub> = T, where T is the learning time step. The learning requires r<sup>2</sup> + 2r<sup>2</sup>(n = r, m = r) time samples. Then construct the following matrices,

$$\delta_{yy} = \begin{bmatrix} y \otimes y | t_1^{t_1 + T}, & \cdots, & y \otimes y | t_l^{t_l + T} \end{bmatrix}^T,$$
  
Store  
measurements  

$$I_{yy} = \begin{bmatrix} \int_{t_1}^{t_1 + T} (y \otimes y) d\tau, & \cdots, & \int_{t_l}^{t_l + T} (y \otimes y) d\tau \end{bmatrix}^T,$$
  

$$I_{yu_0} = \begin{bmatrix} \int_{t_1}^{t_1 + T} (y \otimes u_0) d\tau, & \cdots, & \int_{t_l}^{t_l + T} (y \otimes u_0) d\tau \end{bmatrix}^T.$$

 $y_s(t)$  is related to y(t) by singular perturbation parameter following Chow, Kokotovic, TAC, 1976, 85

▶ 2. Controller update iteration : Starting with a stabilizing  $K_0$ , Solve for K iteratively ( $k = 0, 1, \cdots$ ) once matrices  $\delta_{yy}$ ,  $I_{yy}$ ,  $I_{yu_0}$  are constructed and iterative equation can be written for each small learning steps as,

$$\underbrace{\begin{bmatrix} \delta_{yy} & -2I_{yy}(I_n \otimes K_k^T R) - 2I_{yu_0}(I_n \otimes R) \end{bmatrix}}_{\Theta_k} \begin{bmatrix} \operatorname{vec}(P_k) \\ \operatorname{vec}(K_{k+1}) \end{bmatrix}} = \underbrace{-I_{yy}\operatorname{vec}(Q_k)}_{\Phi_k}.$$
Hence  $P_k$  and  $K_{k+1}$  are iteratively solved such that  $|P_k - P_{k-1}| < \overline{\epsilon}, \ \overline{\epsilon} \ \text{is a}$ 
Run least-square

small threshold.

▶ 3. Applying K on the system : Next  $\tilde{u} = -Ky$  is applied and  $u_0$  source is removed.

#### FREENT SYSTEMS CENTER

Sub-optimality theorem [Mukherjee, Bai, Chakrabortty (2018)]

Assuming  $||y_s(t)||$  and  $||u_0(t)||$  are bounded the sub-optimal solutions are given by

 $P = \overline{P} + O(\epsilon), K = \overline{K} + O(\epsilon).$ 

Here ||.|| means the Euclidean norm.

#### Corollary

The optimal objective value J with y(t) feedback is related to  $\overline{J}$  for the reduced slow sub-system with  $y_s(t)$  feedback as,

 $J = \bar{J} + O(\epsilon)$ 

Stability theorem [Mukherjee, Bai, Chakrabortty (2018)]

Assume that the control policy  $u = -MK_k y$  at the  $k^{th}$  iteration is asymptotically stable. Suppose that  $R \succ 0$  and  $Q \succ 0$  with  $\lambda_{min}(Q)$  is sufficiently large. Then the control policy at the  $(k + 1)^{th}$  iteration given by  $u = -MK_{k+1}y$  is asymptotically stable.

#### FREENT SYSTEMS CENTER

### Simulations on clustered network

NC STATE UNIVERSITY

- We next consider a simplified LTI clustered multi-agent network with 25 agents divided into 5 clusters
- The network has 4 slow eigen-values, one zero eigen-value and rest are the fast eigen-values. The slow eigen-values are -0.128, -0.195, -0.196, and -0.2638.
- The control is enabled by Aggregation-control-inversion architecture



- It takes at least 18.75 seconds to learn the K ∈ ℝ<sup>25×25</sup> matrix accurately (atleast n<sup>2</sup> + 2mn samples are needed to learn K; here n = m = 25, T = 0.01s)
- The reduced-order control requires at least only r<sup>2</sup> + 2r<sup>2</sup> = 75 number of samples, and for simulation we consider 1.2s for learning with 120 samples





Other design variants

• Output feedback design using Neuro-adaptive observer



• Incorporating robustness to the projection-based RL

**NC STATE** 

UNIVERS

## SYSTEMS CENTER

#### Bringing RL ideas to power systems – Direct SP-RL application



- The synchronous generator states can be estimated by *Decentralized State Estimators (DSEs)* using the voltages and currents of terminal buses obtained from PMUs
- The controls on the generators are actuated via excitation dynamics
- Along with *inertia weighted average of electromechanical states*, practical design will also require to consider *inertia weighted averaged excitation states*

**NC STATE** 

UNIVERSI





- Transmission model information is not required
- Generator states are estimated locally via DSEs
- A reduced-dimensional RL design that compensates the projection error
- Faster learning with reduced-dimensional feedback than full-dim. design

#### Simulations

#### NC STATE UNIVERSITY

• Voltage and current measurements are generated by adding the white Gaussian noises



• The unscented Kalman filter is implemented in a decentralized fashion for the individual generating units showing high accuracy



#### Simulations

#### NC STATE UNIVERSITY

• Here, n = 64, m = 16, and  $r = 5 \rightarrow$  Full dim. design: rank condition of  $\Theta_k$  would require at-least n(n + 1)/2 + nm = 3104 time samples  $\rightarrow$  more than 31 s (T=0.01 s) of exploration

• However, the projected design needs at-least 4r(4r+1)/2 + 4rm + 4rp = 1810 samples without control back projection (i.e., m = 16 and  $M = I_{16}$ ), and 1590 samples with control back projection (i.e., m = 5)



Exploration and convergence

• The power grid model is excited with exploration signal with minimal perturbations  $\rightarrow$  the supplementary actuation added at  $V_{ref} \rightarrow$  improved performances on inter-area oscillations and angular frequencies



Performance improvement

#### Decentralized RL on DERs

٠

#### NC STATE UNIVERSITY

• Wind plants (DFIGs) are connected at buses 19 and 62



Performance improvement using learned control

Exploration through DFIGs at (616, 616) MW case

RL design has been performed with

#### FREEN: SYSTEMS CENTER

### Decentralized RL on DERs

(21)

#### Mukherjee, Bai, Chakrabortty (2020)

- Next generation power grid is envisioned to be equipped with distributed energy resources (DERs)
- Decentralized control on DERs helps in *scalable* design

<u>Learning Phase</u>



**Implementation Phase** 



- Operator doesn't need to know detailed DER models in RL based designs (*supplementary design with plug-and-play*)
- Localized learning reduces exploration time and control dimension



Step 2- Controller update: Starting with a stabilizing  $K_{i0}$ , Solve for  $K_i$  iteratively  $(k = 0, 1, \cdots)$  once matrices  $\delta_{y_i y_i}, I_{y_i y_i}, I_{y_i u_{i0}}, I_{y_i V_{Wi}}$  are constructed by the following iterative equation

$$\delta_{y_iy_i} \quad -2I_{y_iy_i}(I_n \otimes \bar{K}_{ik}^T R_i) - 2I_{y_iu_{i0}}(I_n \otimes R_i) \quad -2I_{y_iV_{wi}}] \times \\ \Theta_{ik} \\ \begin{bmatrix} vec(\bar{P}_{ik}) \\ vec(\bar{K}_{i(k+1)}) \\ vec(G_{3i}^T \bar{P}_{ik}) \end{bmatrix} = \underbrace{-I_{y_iy_i}vec(Q_{ik})}_{z_i}.$$

 $\bar{P}_{ik}$  and  $\bar{K}_{i(k+1)}$  are iteratively solved such that  $|\bar{P}_{ik} - \bar{P}_{i(k-1)}| < \bar{\epsilon}, \bar{\epsilon}$  is a small threshold. This process is performed in a very fast computing platform when the system is under control  $u = u_{i0}$ .

Step 3- Applying control on the system : Next  $u_i = -K_i y_i$  is applied and  $u_{i0}$  source is removed. End For



- Measurement-driven designs are discussed using multiple approaches
- RL-based designs are proposed to solve the curse of dimensionality associated with the learning control design using singular perturbation approximations
- The proposed methodology enjoys faster learning and reduction in feedback control dimensionality
- Sub-optimality and stability analyses are performed using the singular perturbation approximations
- Designs can be extended to control oscillations in power systems considering the projection error in the dimensionality reduction
- Decentralized design on DERs enjoys scalability and modularity along with fast learning

## SYSTEMS CENTER

- Towards a data-driven decision making for analysis and control of next generation power grid
- Advances in the computing capabilities involving machine learning and data-driven control algorithms and the deployment of high resolution measurement devices in power grid make this union possible
- Inter-disciplinary research areas :

Core subject area : Power system operations, Power Systems Dynamics, Renewable-integrated power grid etc. Computing and analytical tools : Convex Optimization, Control theory,

Statistical learning with ML/DL, Reinforcement

learning, Cyber-physical system security etc.

• Research towards an autonomous energy grid where mathematical tools from controls, optimization, data analytics, etc. all can work together for solving energy problems of the future



- S. Mukherjee, Ph.D. Dissertation, Data-Driven Reinforcement Learning Control using Model Reduction Techniques: Theory and Applications to Power Systems, 2020, available via NC State Libraries, https://www.lib.ncsu.edu/resolver/1840.20/37368.
- S. Mukherjee, H. Bai, and A. Chakrabortty. On Model-Free Reinforcement Learning of Reduced-order Optimal Control for Singularly Perturbed Systems. *59<sup>th</sup> IEEE Conference on Decision and Control*, FL, Dec. 2018.
- S. Mukherjee, S. Babaei, A. Chakrabortty, and B. Fardanesh, "Measurement-Driven Optimal Control of Utility-Scale Power Systems: A New York State Grid Perspective," *International Journal of Electrical Power and Energy Systems, Elsevier*, 2020.
- S. Mukherjee, H. Bai, A. Chakrabortty, "Reduced-Dimensional Reinforcement Learning Control using Singular Perturbation Approximations", Submitted to Automatica, 2019, available on arxiv.
- S. Mukherjee, A. Chakrabortty, and H. Bai. Block-Decentralized Model-Free Reinforcement Learning Control of Two Time-Scale Networks. *American Control Conference*, Philadelphia, 2019.
- S. Mukherjee, H. Bai, A. Chakrabortty, Model-Free Decentralized Reinforcement Learning Control of Distributed Energy Resources, accepted in IEEE PES General Meeting, Montreal, Canada, 2020.



NC STATE UNIVERSITY

### Thank you!

Q & A

Contacts: <u>smukher8@ncsu.edu</u>, <u>achakra2@ncsu.edu</u> More on FREEDM: <u>https://www.freedm.ncsu.edu/</u>