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Towards data-driven control
Wide-area damping control of power grid

• The system dynamics of the large-scale network
systems may not always be known

• Most of the designs in the existing literature are
performed on a relatively small system with known
dynamics

• Motivating example using approach 1 : Measurement-based optimal controller on a practical
full-scale transmission model of New York State grid

Use measurement-driven approach Approach 1: an indirect control design
with intermediate identification

Approach 2: a direct control design
via Reinforcement Learning (RL)

US Eastern Interconnection power grid consists of
over 70,000 buses and thousands of dynamic
elements

Controlling inter-area oscillations in 
power systems



Approach 1: Measurement-driven 
control of NYS grid
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• Objective: Improve the inter-area oscillation performance pertaining to NYS grid
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Approach 1: Control design
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Coherency of NYS 
grid using PCA

Reduced-order system 
identification using ERA

PMU at Southern NYS

Observability analysis

Western PMU Central PMU

Map source: 2018 Power Trends, NYISO 



Approach 1: Control performance
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 We showcase a sequential data-driven damping control design approach on the FACTS facility in NYS 
using tools from machine learning, linear system identification and optimal control theory. 

 A Linear Quadratic Gaussian type optimal controller is designed. It is then coded in FORTRAN as a
user written module and linked with PSS/E EI dynamic suit and tested with NYISO specified
contingencies.

Marcy bus (cont. A) Avg. frequency (cont. A)

Freq. scaling 
translates to 

several 
hundreds of 

MWs of 
fluctuations



From indirect to direct approach
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Plant (e.g. power system)

System identification: 
(A,B) dynamic matrices

Indirect 
approach

Optimal controller solution

Model
dependent

• What if operating conditions keep 
on changing?

• New components are integrated 
to the system (e.g. DERs for 
power grids)

Run approach 1 multiple 
times

• Can we avoid that?

 Yes, perform direct gain computation 
via Reinforcement Learning 

Optimality + Adaptiveness
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A direct approach via reinforcement learning 

• Reinforcement Learning (RL)/ Adaptive Dynamic programming (ADP) is generally used in finding the
feedback gains without explicit state dynamic descriptions

• Classically RL has been used for sequential decision making using Markov Decision Processes (MDPs) in
AI community

• However, in the last decade, RL has been used to control dynamical systems

( Vrabie et al., Automatica, 2009, Jiang et al., Automatica, 2012, etc. )

• Major challenges : 1. Learning the feedback gain using full-dimensional system increases learning time,
and 2. results in dense feedback control structure

Opportunity to design RL controls for power system dynamics

One solution – Incorporate the ideas of model reduction in conjunction with RL



What is RL?
How is RL related to feedback control?
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Plant (e.g. power system)

Feedback controller

State
feedback

Control
input

Barto et al. (2004)
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Exploit the structure : reduced-dim. learning

• Large-scale physical networks specific structures in their dynamics

• Power grid is a complex dynamic network which shows coherency/ clustering, resulting in time-scale
separated state dynamics

mathematically represented by singular perturbation theory

• Use the slow states to control inter-cluster oscillations, known as inter-area modes in multi-area power
systems
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Aggregate-control-inversion RL

Projection to lower 
dimensional space

Reduced dimensional 
learning of feedback gains

Projecting the gains
back to original coordinates

Mukherjee, Bai, Chakrabortty (2018)
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Overall dynamics: 

Brief overview of theoretical development

Model-free 
Linear 
Quadratic 
Regulator 
(LQR)

Underlying two time-scale dynamics: 

Control: u=-M(Ky) without knowing A and B 

Performance 

criterion

Stability

Ideal slow dynamics 

Algebraic Riccati Equation:

Still model-based 
solution
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From model-based to model-free formulation

Derivative
along the
trajectory

Taking
integral

Eliminate model information
using Kleinman’s algorithm

Trajectory-
based

Data-driven
solution

ys(t) is ideal, and not implementable, so
replace with y(t)

Model-based 
iterative solution
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The SP-RL algorithm

ys(t) is related to y(t) by 
singular perturbation 
parameter following 
Chow, Kokotovic, TAC, 
1976, 85Store 

measurements

Run least-

square
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Theoretical results in a nutshell

[Mukherjee, Bai, Chakrabortty (2018)]

[Mukherjee, Bai, Chakrabortty (2018)]
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Simulations on clustered network

Increasing 
Q 



Other design variants
4/30/2020
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• Output feedback design using Neuro-adaptive observer

• Block-decentralized design 

• Incorporating robustness to the projection-based RL



Bringing RL ideas to power systems –
Direct SP-RL application

• The synchronous generator states can be estimated by Decentralized State Estimators (DSEs) using
the voltages and currents of terminal buses obtained from PMUs

• The controls on the generators are actuated via excitation dynamics

• Along with inertia weighted average of electromechanical states, practical design will also require to
consider inertia weighted averaged excitation states
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Practical large-scale power grid 
contains hundreds of dynamic 

components (say, n components)

Full-scale learning will take long 
time making it useless

Exploit the clustered nature (say, r 
clusters) to make considerable 

faster feedback gain computation

With r<< n, effectiveness 
increases 

Coherent 
clusters



Key Aspects
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• Transmission model information is not required

• Generator states are estimated locally via DSEs

• A reduced-dimensional RL design that compensates the 
projection error

• Faster learning with reduced-dimensional feedback than 
full-dim. design



Simulations
4/30/2020
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Performance of decentralized state
estimation using UKF



Simulations
4/30/2020
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Exploration and convergence Performance improvement



Decentralized RL on DERs

• Wind plants (DFIGs) are connected at
buses 19 and 62

Wind 
penetration 
increased 
from 
(528,528) 
MW to 
(650,650) 
MW

Performance improvement using learned control Exploration through DFIGs at (616, 616) MW case

• RL design has been performed with
(616, 616) MW penetration levels



Decentralized RL on DERs

• Next generation power grid is
envisioned to be equipped with
distributed energy resources (DERs)

• Decentralized control on DERs helps in
scalable design

• Operator doesn’t need to know detailed
DER models in RL based designs
(supplementary design with plug-and-play)

• Localized learning reduces exploration time
and control dimension

Decentralization 
requires DER 
terminal bus 
voltages

Mukherjee, Bai, Chakrabortty (2020)



Concluding Remarks
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• Measurement-driven designs are discussed using multiple approaches

• RL-based designs are proposed to solve the curse of dimensionality associated with
the learning control design using singular perturbation approximations

• The proposed methodology enjoys faster learning and reduction in feedback control
dimensionality

• Sub-optimality and stability analyses are performed using the singular perturbation
approximations

• Designs can be extended to control oscillations in power systems considering the
projection error in the dimensionality reduction

• Decentralized design on DERs enjoys scalability and modularity along with fast
learning



Moving forward

• Towards a data-driven decision making for analysis and control of next generation power
grid

• Advances in the computing capabilities involving machine learning and data-driven control
algorithms and the deployment of high resolution measurement devices in power grid make
this union possible

• Inter-disciplinary research areas :

Core subject area : Power system operations, Power Systems Dynamics,

Renewable-integrated power grid etc.

Computing and analytical tools : Convex Optimization, Control theory,

Statistical learning with ML/DL , Reinforcement

learning, Cyber-physical system security etc.

• Research towards an autonomous energy grid where mathematical tools from controls,
optimization, data analytics, etc. all can work together for solving energy problems of the
future
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