

Medium-Voltage Modular Extreme Fast Charging System

Our webinar will begin in a few minutes.



## Introduction



- Welcome
- FREEDM Overview
- Zoom Functionality

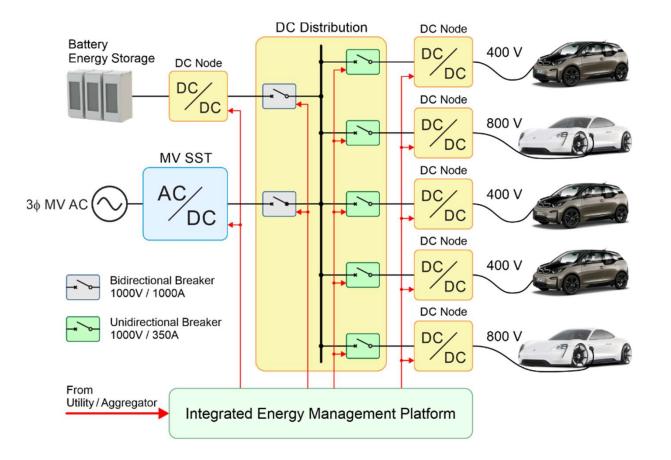
## freedm.ncsu.edu



#### FREEDAW SYSTEMS CENTER

## **Technical Overview**



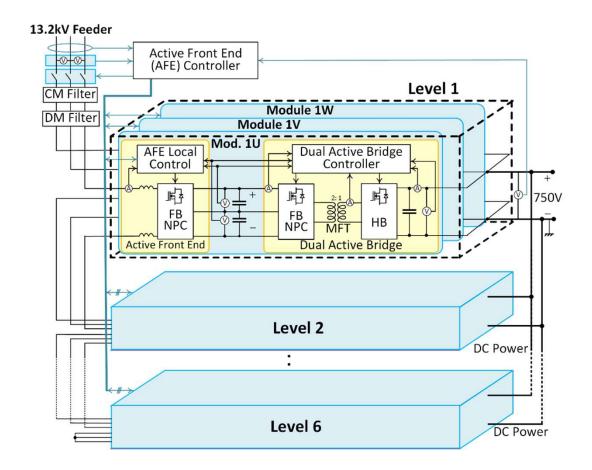

#### Develop and deploy a 1 MW medium voltage XFC station:

- Shared bi-directional Solid State Transformer (SST) connecting directly to the medium voltage (MV) distribution system
- DC distribution network with solid-state DC protection
- Energy management platform
- DC Nodes for local isolation and DC/DC conversion



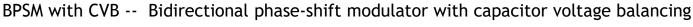
### **Technical Overview**

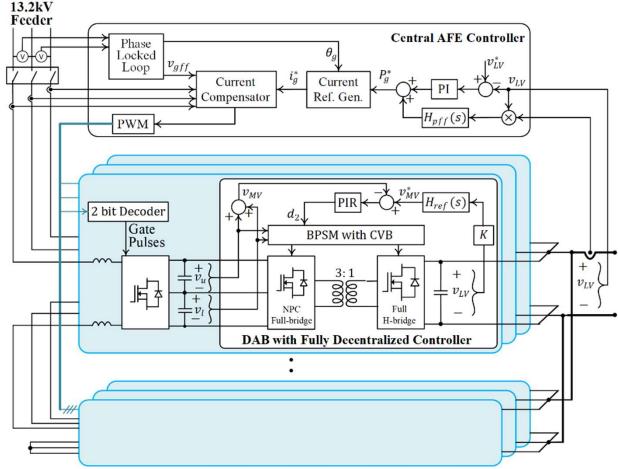





4

## **FREEMS** SST Architecture





- The SST connects to three-phase 13.2kV $_{\rm LL}$  input and delivers 750V DC
- A total of 18 modules are arranged in 6 levels using input-series outputparallel configuration
- Each level is made up of three modules processing three-phase power on the input and delivering DC power at the output
- Each module consists of an active front end (AFE) and dual-activebridge (DAB) isolated DC-DC stage

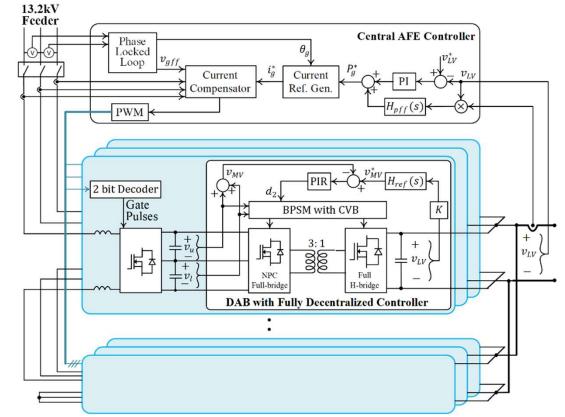


#### **Design Approach & Control Architecture** SYSTEMS CENTER

- Each Dual active bridge (DAB) autonomously regulates its medium voltage (MV) bus, minimizing communication requirements
- Centralized controller for all AFEs with local protection and decoding
- Interleaved modulation of AFEs and low voltage (LV) side bridges of DABs
- DABs designed for sinusoidal power flow, minimizing storage requirements on MV DC capacitors
- Solid-state protection on MV and LV
- $H_{ref}(s)$  and  $H_{pff}(s)$  are low-pass filters PIR -- Proportional Resonant Integral Controller



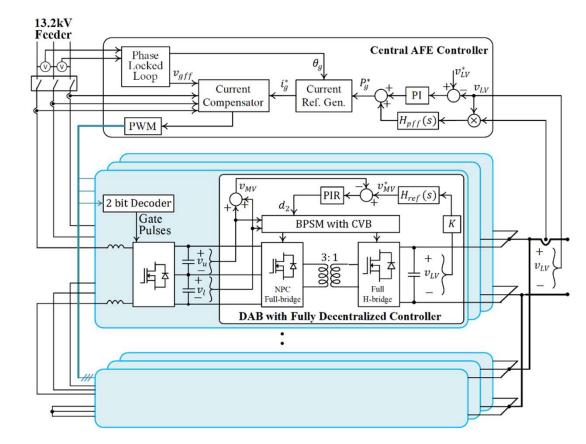



NC STATE

UNIVERS

## **AFE Control**

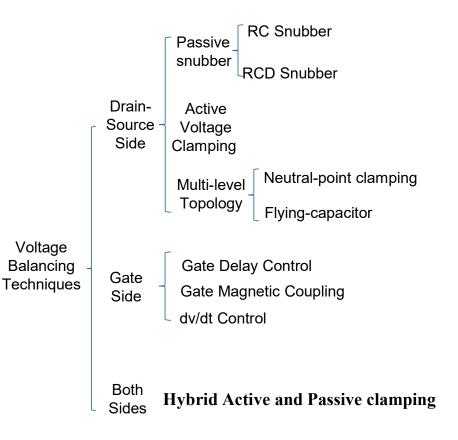
#### NC STATE UNIVERSITY


- A central controller is used for the active front-end converter stages
- Based on the LVDC bus voltage feedback, grid power reference P<sup>\*</sup><sub>g</sub> is generated ; load current measurement of the LVDC bus is used as a feedforward
- A stationary frame current compensator is used
- 2-bit encoded PWM signal sent to each AFE stage



## **Background for AFE**




- For Active Front-end
  - A total of 18 modules are arranged in 6 levels for 3 phase
  - 85kW for each module
  - 2.15kV DCBUS for each module
  - Unavailable commercial SiC MOSFETs above 1.7kV

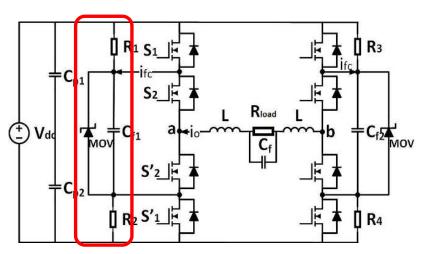


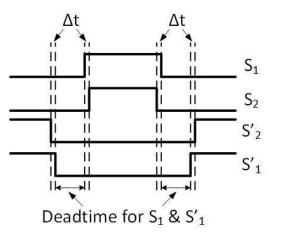
### **Series-Connection State-of-the-art**

#### NC STATE UNIVERSITY

- Drain-source side solution suffers high power loss, bulky passive snubbers
- Gate-side solution suffers complex voltage sensing and advanced gate driver
- The proposed solution has small passive snubbers and eliminated the complex voltage sensing




#### Proposed Hybrid Series-Connection Technique

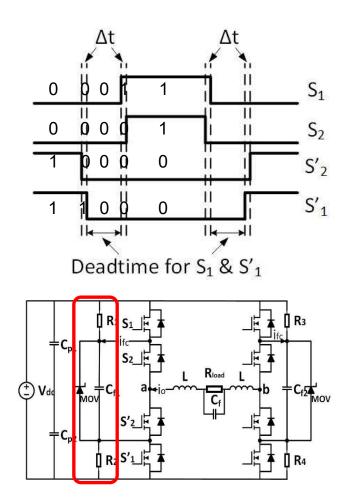

#### NC STATE UNIVERSITY

• For passive clamping

SYSTEMS CENTER

- One clamping circuit for four switches
- Power loss is around 1W for 10kW output power (0.01%)
- For active gating
  - Standard gate driver and DSP with HRPWM
  - Pre-defined modulation based on Rectifier Effect of FC
  - No voltage/current sensing
  - No voltage balancing control

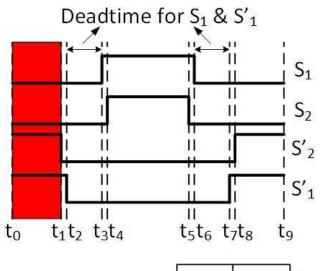




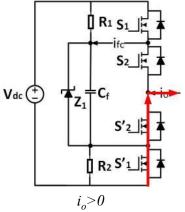


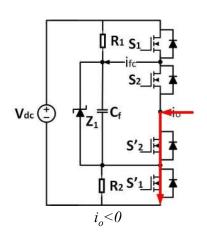

NC STATE UNIVERSITY

- Rectifier Effect of flying capacitor topology
  - Predefined modulation scheme eliminates
    4 switching states, while keeping the full
    control capability of the switches in series
  - Remained 5 switching states ensure ifc rectified from AC current during a very short interval, which is independent of voltage, power factor, and current


| No. | <b>S</b> <sub>1</sub> | <b>S</b> <sub>2</sub> | S'2 | S'1 | i <sub>o</sub> | İ <sub>fc</sub> |
|-----|-----------------------|-----------------------|-----|-----|----------------|-----------------|
| 1   | 1                     | 1                     | 0   | 0   | +/-            | 0/0             |
| 2   | 1                     | 0                     | 1   | 0   | +/-            | +/-             |
| 3   | 0                     | 1                     | 0   | 1   | +/-            | - / +           |
| 4   | 0                     | 0                     | 1   | 1   | +/-            | 0/0             |
| 5   | 1                     | 0                     | 0   | 0   | +/-            | +/0             |
| 6   | 0                     | 1                     | 0   | 0   | +/-            | -/0             |
| 7   | 0                     | 0                     | 1   | 0   | +/-            | 0/-             |
| 8   | 0                     | 0                     | 0   | 1   | +/-            | 0 / +           |
| 9   | 0                     | 0                     | 0   | 0   | +/-            | 0/0             |

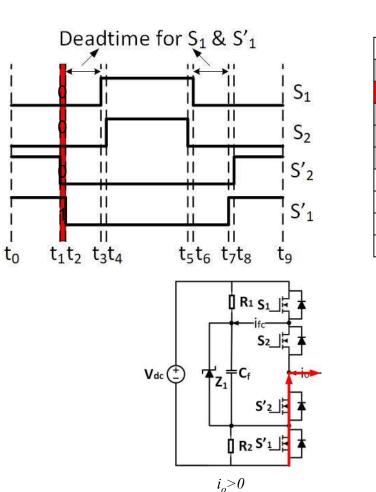



11

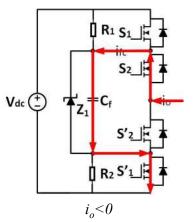








| <b>S</b> <sub>1</sub> | <b>S</b> <sub>2</sub> | S'2 | S' <sub>1</sub> | i <sub>o</sub> | İ <sub>fc</sub> |
|-----------------------|-----------------------|-----|-----------------|----------------|-----------------|
| 0                     | 0                     | 1   | 1               | +/-            | 0/0             |
| 0                     | 0                     | 0   | 1               | +/-            | 0 / +           |
| 0                     | 0                     | 0   | 0               | +/-            | 0/0             |
| 1                     | 0                     | 0   | 0               | +/-            | +/0             |
| 1                     | 1                     | 0   | 0               | +/-            | 0/0             |
| 1                     | 0                     | 1   | 0               | +/-            | +/-             |
| 0                     | 1                     | 0   | 1               | +/-            | - / +           |
| 0                     | 1                     | 0   | 0               | +/-            | - / 0           |
| 0                     | 0                     | 1   | 0               | +/-            | 0/-             |



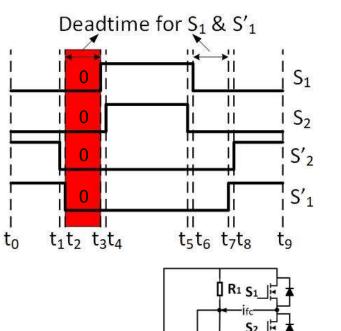



12

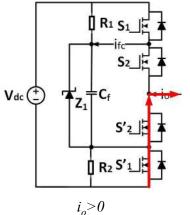


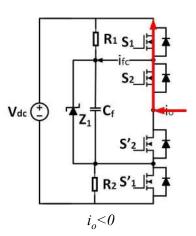


 $S_2$  $S'_2$  $S'_1$  $S_1$ İ<sub>o</sub> *İ<sub>fc</sub>* 0 0 1 +/-0/0 1 0 / ++/-0 0 0 0 +/-0/0 1 0 0 0 +/0 +/-1 1 0 0 0/0 +/-1 0 1 0 +/-+/-0 1 0 1 +/-- / + 0 1 0 0 +/--/0 0 0 0 +/-0/-1




13


**NC STATE** 


UNIVERSITY





| <b>S</b> <sub>1</sub> | <b>S</b> <sub>2</sub> | S'2 | S' <sub>1</sub> | i <sub>o</sub> | İ <sub>fc</sub> |
|-----------------------|-----------------------|-----|-----------------|----------------|-----------------|
| 0                     | 0                     | 1   | 1               | +/-            | 0/0             |
| 0                     | 0                     | 0   | 1               | +/-            | 0 / +           |
| 0                     | 0                     | 0   | 0               | +/-            | 0/0             |
| 1                     | 0                     | 0   | 0               | +/-            | +/0             |
| 1                     | 1                     | 0   | 0               | +/-            | 0/0             |
| 1                     | 0                     | 1   | 0               | +/-            | +/-             |
| 0                     | 1                     | 0   | 1               | +/-            | - / +           |
| 0                     | 1                     | 0   | 0               | +/-            | -/0             |
| 0                     | 0                     | 1   | 0               | +/-            | 0/-             |





14

**NC STATE** 

UNIVERSITY





İ<sub>o</sub>

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

+/-

1

1

0

0

0

1

0

0

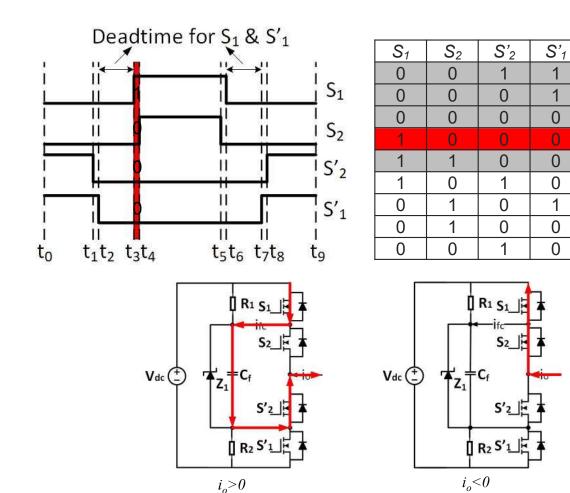
İ<sub>fc</sub>

0/0

0/+

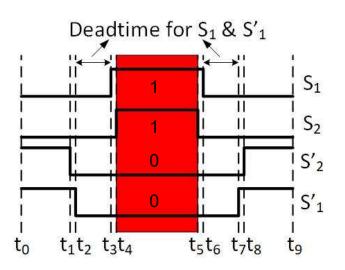
0/0

+ / 0

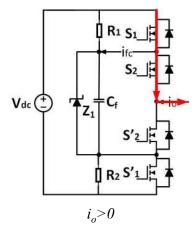

0/0

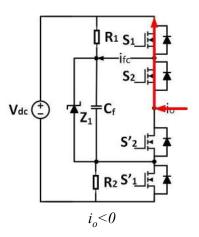
+/-

- / +


- / 0

0/-





15



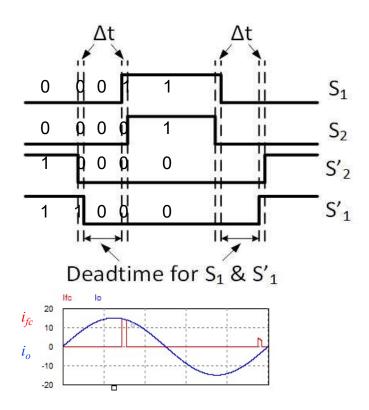


| S <sub>1</sub> | <b>S</b> <sub>2</sub> | S'2 | S' <sub>1</sub> | i <sub>o</sub> | İ <sub>fc</sub> |
|----------------|-----------------------|-----|-----------------|----------------|-----------------|
| 0              | 0                     | 1   | 1               | +/-            | 0/0             |
| 0              | 0                     | 0   | 1               | +/-            | 0 / +           |
| 0              | 0                     | 0   | 0               | +/-            | 0/0             |
| 1              | 0                     | 0   | 0               | +/-            | +/0             |
| 1              | 1                     | 0   | 0               | +/-            | 0/0             |
| 1              | 0                     | 1   | 0               | +/-            | + / -           |
| 0              | 1                     | 0   | 1               | +/-            | - / +           |
| 0              | 1                     | 0   | 0               | +/-            | - / 0           |
| 0              | 0                     | 1   | 0               | +/-            | 0/-             |





16


**NC STATE** 

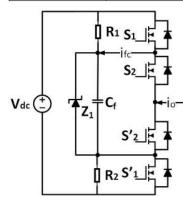
UNIVERSITY

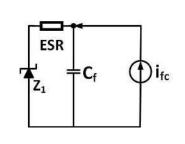


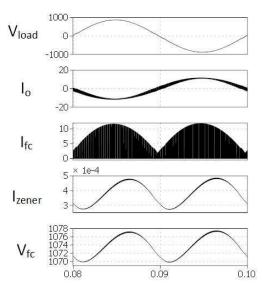


- □ Simple law of rectifier effect
  - $\succ$  i<sub>fc</sub>≥0 as long as ∆t>0
  - Always turn on outer switches first and turn off inner switches first
- $\Box \Delta t \text{ is the effective time interval to} \\ \text{charge flying capacitor. The shorter } \Delta t, \\ \text{the less power loss on clamper} \\ \end{bmatrix}$
- □ If  $i_o$  direction unchanged within one switching period, two of four  $\Delta t$  will be zero and the other two equal to load current within  $\Delta t$







## **Clamping Circuit Design**




- Clamping voltage is approximately half of nominal DCBUS voltage
- □ Flying cap and clamper ESR act like low-pass filter for current source  $i_{fc}$  to suppress the current spike
- □ Based on simulation, adjust  $C_f$  to make the voltage ripple less than 1% of rated voltage at full power
- Start-up resistors are less than resistance of Z<sub>1</sub> below breakdown voltage and large enough to limit the leakage current

| Parameters   | Value             | Parameters          | Value<br>2kV |  |
|--------------|-------------------|---------------------|--------------|--|
| $C_{f1}$     | 68nF              | DCBUS voltage       |              |  |
| Vzener       | 1060V             | Switching frequency | 20kHz        |  |
| $R_{zener}$  | $36k\Omega$       | Deadtime            | 0.5us        |  |
| $R_1 \& R_2$ | $10M\Omega$       | $\Delta t$          | 1ns          |  |
| SIC MOSFET   | $1700V/45m\Omega$ | Load current        | 8.3A         |  |







#### FREEDAW SYSTEMS CENTER

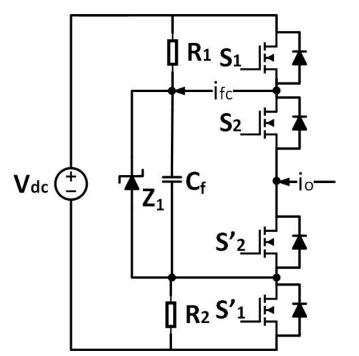
## **Power Loss on Clamping Circuit**



□ Assumptions:

 $\succ$  *i*<sub>o</sub> direction unchanged within one switching period

Deadtime is negligible compared to switching period

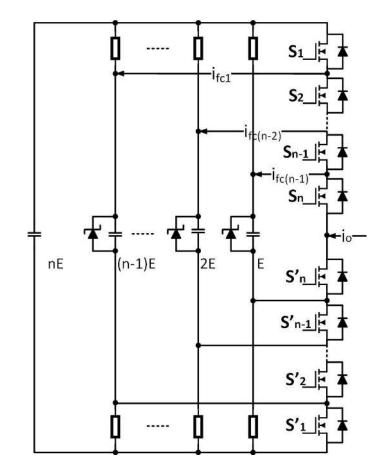

Start-up circuit leakage current

 $I_{start-up} \approx \frac{V_{dc} - V_{cf}}{10 M \Omega} \approx 0.1 m A.$ 

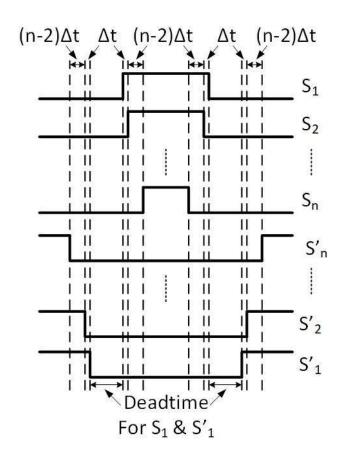
Average value of clamper current

$$\bar{I}_{clamper} \approx 2 \cdot \varDelta t \cdot f_s \cdot \bar{I}_o + I_{start-up}$$

□ When  $\Delta t$ =1ns, f=20kHz,  $I_{avg}$ =7.5A ( $I_{rms}$ =8.3A),  $I_{clamper} \approx 0.4mA$ ,  $P_{loss} \approx 0.4W$ 







#### Extension to series-connection of 2n SiC MOSFETs

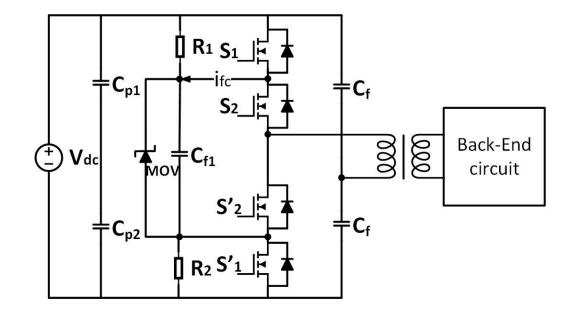


(n-1) clamping circuits for 2n SiC MOSFET



Pre-defined modulation scheme




20



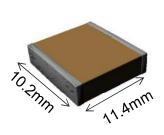
### Extension to series-connection of 2n SiC MOSFETs

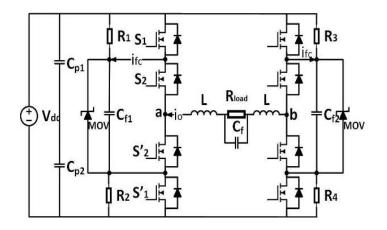
□ Extension to DC-DC topologies

- Isolated resonant dc-dc converters
- Isolated DAB converters
- Other multi-level isolated dc-dc converters



**NC STATE** 


UNIVERSITY



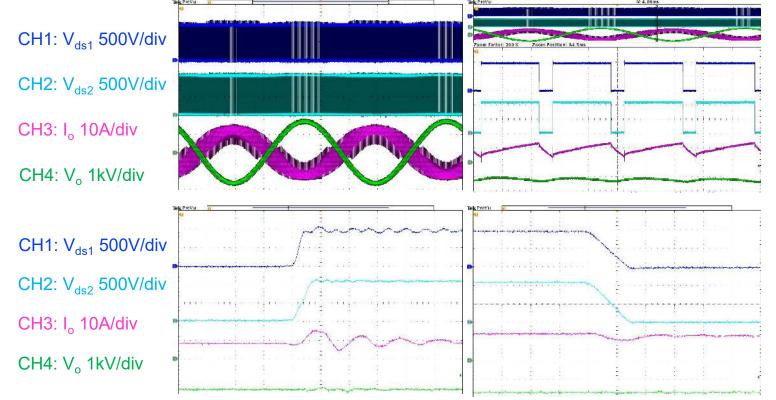

### **Hardware Parameters**



| Parameters       | Value             | Parameters     | Value   |
|------------------|-------------------|----------------|---------|
| C <sub>fl</sub>  | 68nF              | DCBUS Voltage  | 2kVDC   |
| Zener Voltage    | 1060V             | Load Voltage   | 1.2kVAC |
| Zener Resistance | 36kΩ              | Load Current   | 8.7A    |
| $R_2\&R_3$       | 10MΩ              | Deadtime       | 0.5us   |
| SiC MOSFET       | $1700V/45m\Omega$ | Δt             | lns     |
| Inductor         | 6mH               | Switching freq | 20kHz   |










# Waveforms under rated current and rated DCBUS voltage



- Validate the effectiveness of proposed hybrid clamping technique under any current, voltage, power factor
- Negligible voltage spike for inner MOSFET due to minimized commutation loop. Voltage ringing for outer MOSFET will be optimized.



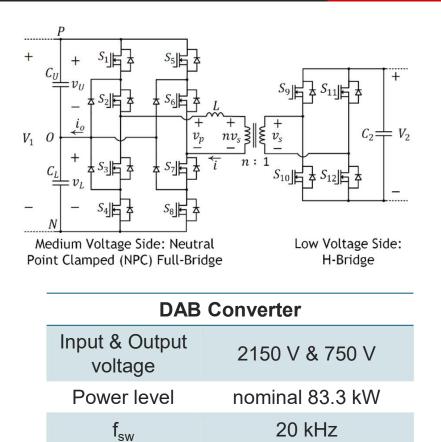
#### FREEDAW SYSTEMS CENTER

# Low power dissipation on clamping circuit



Power dissipation on zener diodes is around 0.5W
 Power dissipation on start-up resistors is around 0.1W



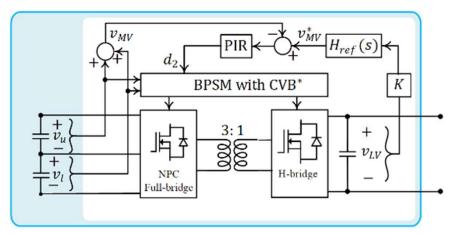

#### Temperature of TVS under different leakage current

| V <sub>MOV</sub> /V | i <sub>MOV</sub> /mA | P <sub>MOV</sub> /W | Temperature/°C |
|---------------------|----------------------|---------------------|----------------|
| 834                 | 0.23                 | 0.123               | 31             |
| 540                 | 0.52                 | 0.281               | 36             |
| 550                 | 1.10                 | 0.605               | 50             |

## **Dual Active Bridge Design**

#### NC STATE UNIVERSITY

- Dual active bridge topology
- Leakage inductance selected to allow soft switching over entire operating range
- Transformer turn ratio of 3:1
- All-SiC solution with 1700V modules on MV and 1200V modules on LV side
- Switching frequency of 20kHz, with module interleaving on the LV bus

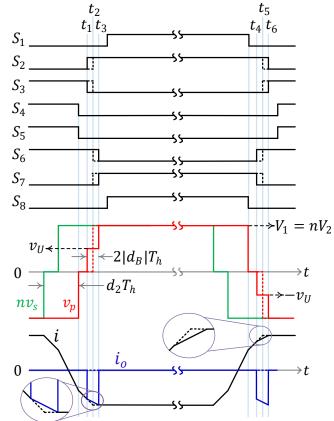




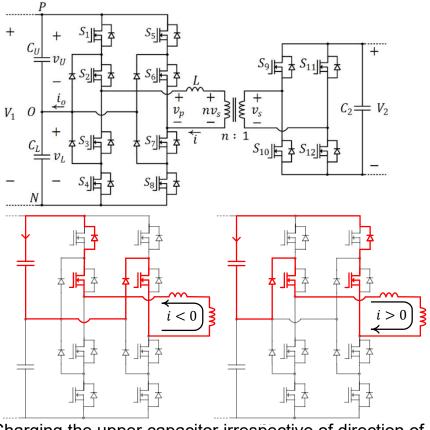

## DAB Control and Modulation



- A proportional-integral-resonant (PIR) compensator eliminates 2nd harmonic oscillation on the MV DC bus
- A bidirectional phase-shift modulator (BPSM) with capacitor voltage balancing (CVB) generates the gate pulses for the primary and secondary bridges of the DAB




Dual Active Bridge (DAB) with Decentralized control


#### FREEDAW SYSTEMS CENTER

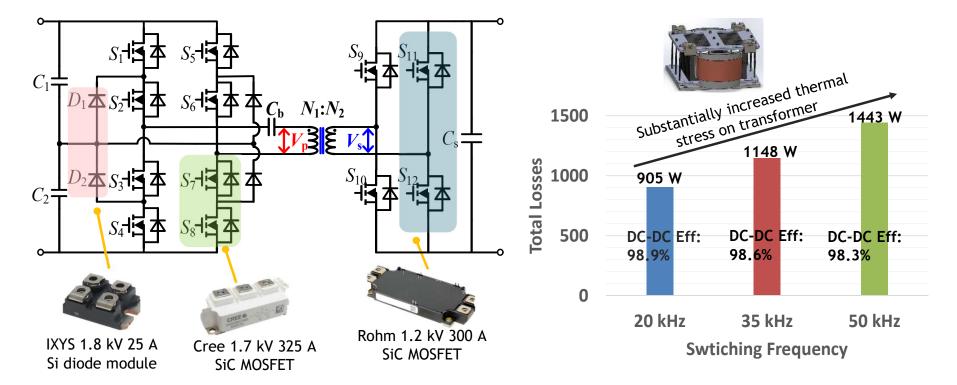
## **Capacitor Voltage Balancing**

#### NC STATE UNIVERSITY



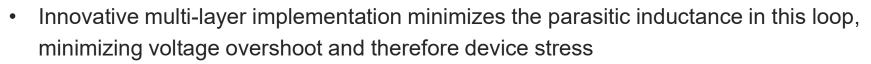
Dashed lines correspond to voltage balanced operation  $(v_U = v_L)$  and solid lines show correspond to  $v_U < v_L$ 

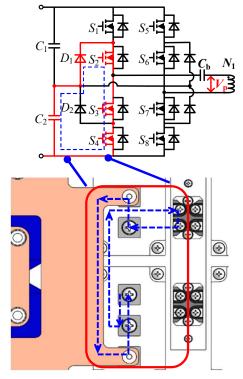



Charging the upper capacitor irrespective of direction of transformer current

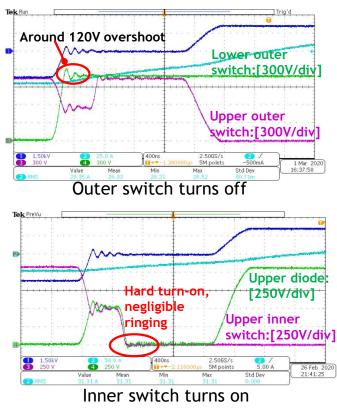


## Power Stage Design





• Target efficiency is 98.9% at the cost of lower power density and underutilized switching capability of SiC devices; 20 kHz is selected based on loss analysis






## **Commutation Loop Optimization**

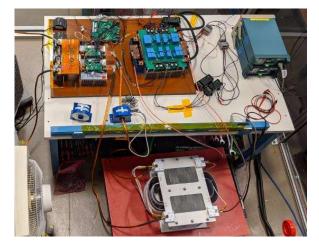


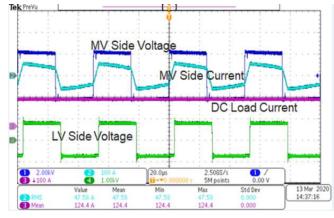


Commutation loop in physical setup



**NC STATE** 

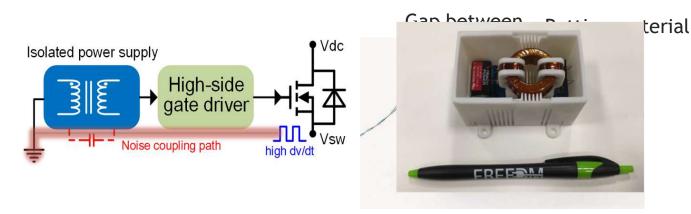

UNIVERSITY



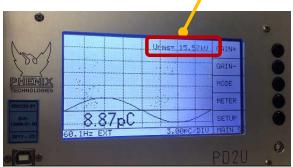

## **DAB Stage Testing**



- Successfully tested DAB stage at 95 kW (115% of rated load)
- Efficiency is measured at 98.9%
- Hotspot below 70°C in steady-state (less than 50°C temperature rise)
- Low voltage overshoot on device drain-to-source voltage






## High Isolation Power Supply

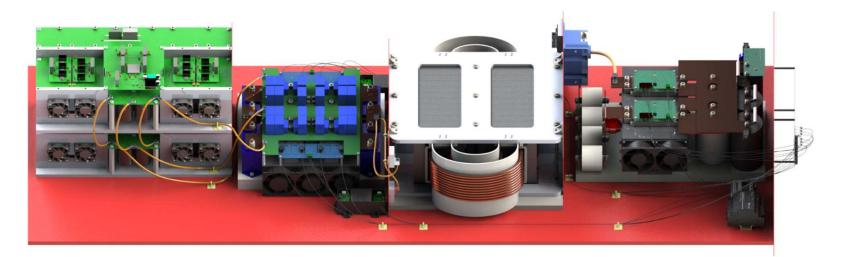
- High isolation voltage is achieved through loosely coupled transformer.
- The partial discharge inception voltage reaches 15 kV (target 40kV). Extinction voltage above 10 kV.
- Small parasitic capacitance (1.2pF) provides superior common mode noise rejection.
- Developing potting procedure that allows for reliable and repeatable results.



Charge goes beyond 15.6 kV at 10 pC

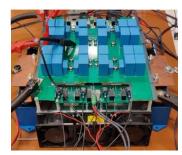


31

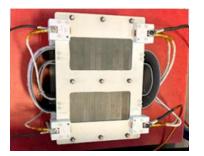

**NC STATE** 

UNIVERSI




## **SST Module Prototype**








Active front-end



DAB MV side



Transformer



DAB LV side



## References



Source: M.A. Awal, Md. Bipu, O. Montes, H. Feng, I. Husain, W. Yu and S. M. Lukic, Capacitor Voltage Balancing for Neutral Point Clamped Dual Active Bridge Converters, *IEEE Transactions on Power Electronics*, doi: 10.1109/TPEL.2020.2988272.

D. Wang and W. Yu, "Series Connection of SiC MOSFETs with Hybrid Active and Passive Clamping for Solid State Transformer Applications," 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 2019, pp. 12-19, doi: 10.1109/WiPDA46397.2019.8998791.





## Thanks!