
Our webinar will begin in a few minutes.
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Medium-Voltage Modular Extreme 
Fast Charging System



Introduction

• Welcome
• FREEDM Overview
• Zoom Functionality
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freedm.ncsu.edu



Technical Overview

Develop and deploy a 1 MW medium voltage XFC station:

• Shared bi-directional Solid State Transformer (SST) connecting 

directly to the medium voltage (MV) distribution system

• DC distribution network with solid-state DC protection

• Energy management platform

• DC Nodes for local isolation and DC/DC conversion
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Technical Overview
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SST Architecture

• The SST connects to three-phase 
13.2kVLL input and delivers 750V DC

• A total of 18 modules are arranged in 
6 levels using input-series output-
parallel configuration

• Each level is made up of three 
modules processing three-phase 
power on the input and delivering DC 
power at the output

• Each module consists of an active 
front end (AFE) and dual-active-
bridge (DAB) isolated DC-DC stage
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Design Approach & Control Architecture

• Each Dual active bridge (DAB) 
autonomously regulates its medium 
voltage (MV) bus, minimizing 
communication requirements

• Centralized controller for all AFEs with 
local protection and decoding 

• Interleaved modulation of AFEs and 
low voltage (LV) side bridges of DABs

• DABs designed for sinusoidal power 
flow, minimizing storage requirements 
on MV DC capacitors 

• Solid-state protection on MV and LV
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Href (s) and Hpff (s) are low-pass filters
PIR -- Proportional Resonant Integral Controller
BPSM with CVB -- Bidirectional phase-shift modulator with capacitor voltage balancing



AFE Control 

• A central controller is used for the active 
front-end converter stages

• Based on the LVDC bus voltage feedback, 
grid power reference 𝑃௚∗ is generated ; 
load current measurement of the LVDC 
bus is used as a feedforward

• A stationary frame current compensator is 
used

• 2-bit encoded PWM signal sent to each 
AFE stage
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Background for AFE

• For Active Front-end
– A total of 18 modules are arranged in 

6 levels for 3 phase
– 85kW for each module
– 2.15kV DCBUS for each module
– Unavailable commercial SiC

MOSFETs above 1.7kV
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Series-Connection State-of-the-art
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Passive
snubber

Active
Voltage

Clamping

Voltage
Balancing

Techniques

Hybrid Active and Passive clamping

RC Snubber

RCD Snubber

Drain-
Source

Side

Gate
Side Gate Magnetic Coupling

Gate Delay Control

dv/dt Control

Multi-level
Topology Flying-capacitor

Neutral-point clamping

Both
Sides

• Drain-source side solution suffers high 
power loss, bulky passive snubbers

• Gate-side solution suffers complex 
voltage sensing and advanced gate 
driver

• The proposed solution has small 
passive snubbers and eliminated the 
complex voltage sensing



Proposed Hybrid Series-Connection 
Technique
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• For passive clamping
– One clamping circuit for four switches
– Power loss is around 1W for 10kW 

output power (0.01% )
• For active gating

– Standard gate driver and DSP with 
HRPWM

– Pre-defined modulation based on 
Rectifier Effect of FC

– No voltage/current sensing
– No voltage balancing control



Operating Principle Based on 
Rectifier Effect
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• Rectifier Effect of flying capacitor topology
– Predefined modulation scheme eliminates 

4 switching states, while keeping the full 
control capability of the switches in series

– Remained 5 switching states ensure ifc
rectified from AC current during a very 
short interval, which is independent of 
voltage, power factor, and current

No. S1 S2 S’2 S’1 io ifc
1 1 1 0 0 + / - 0 / 0
2 1 0 1 0 + / - + / -
3 0 1 0 1 + / - - / +
4 0 0 1 1 + / - 0 / 0
5 1 0 0 0 + / - + / 0
6 0 1 0 0 + / - - / 0
7 0 0 1 0 + / - 0 / -
8 0 0 0 1 + / - 0 / +
9 0 0 0 0 + / - 0 / 0
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Operating Principle Based on 
Rectifier Effect
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S1 S2 S’2 S’1 io ifc
0 0 1 1 + / - 0 / 0
0 0 0 1 + / - 0 / +
0 0 0 0 + / - 0 / 0
1 0 0 0 + / - + / 0
1 1 0 0 + / - 0 / 0
1 0 1 0 + / - + / -
0 1 0 1 + / - - / +
0 1 0 0 + / - - / 0
0 0 1 0 + / - 0 / -

io>0 io<0



Operating Principle Based on 
Rectifier Effect
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S1 S2 S’2 S’1 io ifc
0 0 1 1 + / - 0 / 0
0 0 0 1 + / - 0 / +
0 0 0 0 + / - 0 / 0
1 0 0 0 + / - + / 0
1 1 0 0 + / - 0 / 0
1 0 1 0 + / - + / -
0 1 0 1 + / - - / +
0 1 0 0 + / - - / 0
0 0 1 0 + / - 0 / -

io>0 io<0



Operating Principle Based on 
Rectifier Effect
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S1 S2 S’2 S’1 io ifc
0 0 1 1 + / - 0 / 0
0 0 0 1 + / - 0 / +
0 0 0 0 + / - 0 / 0
1 0 0 0 + / - + / 0
1 1 0 0 + / - 0 / 0
1 0 1 0 + / - + / -
0 1 0 1 + / - - / +
0 1 0 0 + / - - / 0
0 0 1 0 + / - 0 / -



Operating Principle Based on 
Rectifier Effect
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S1 S2 S’2 S’1 io ifc
0 0 1 1 + / - 0 / 0
0 0 0 1 + / - 0 / +
0 0 0 0 + / - 0 / 0
1 0 0 0 + / - + / 0
1 1 0 0 + / - 0 / 0
1 0 1 0 + / - + / -
0 1 0 1 + / - - / +
0 1 0 0 + / - - / 0
0 0 1 0 + / - 0 / -



Operating Principle Based on 
Rectifier Effect
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S1 S2 S’2 S’1 io ifc
0 0 1 1 + / - 0 / 0
0 0 0 1 + / - 0 / +
0 0 0 0 + / - 0 / 0
1 0 0 0 + / - + / 0
1 1 0 0 + / - 0 / 0
1 0 1 0 + / - + / -
0 1 0 1 + / - - / +
0 1 0 0 + / - - / 0
0 0 1 0 + / - 0 / -
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Operating Principle Based on 
Rectifier Effect
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 Simple law of rectifier effect
 ifc≥0 as long as Δt>0
 Always turn on outer switches first 

and turn off inner switches first
 Δt is the effective time interval to 

charge flying capacitor. The shorter Δt, 
the less power loss on clamper

 If io direction unchanged within one 
switching period, two of four Δt will be 
zero and the other two equal to load 
current within Δt 

ifc

io



Clamping Circuit Design
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 Clamping voltage is approximately half of nominal DCBUS voltage
 Flying cap and clamper ESR act like low-pass filter for current 

source ifc to suppress the current spike
 Based on simulation, adjust Cf to make the voltage ripple less than 

1% of rated voltage at full power
 Start-up resistors are less than resistance of Z1 below breakdown 

voltage and large enough to limit the leakage current



Power Loss on Clamping Circuit
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 Assumptions: 
 io direction unchanged within one switching period
 Deadtime is negligible compared to switching period 

 Start-up circuit leakage current

 Average value of clamper current𝐼௖̅௟௔௠௣௘௥ ≈ 2 ⋅ 𝛥𝑡 ⋅ 𝑓௦ ⋅ 𝐼௢̅ + 𝐼௦௧௔௥௧ି௨௣
 When Δt=1ns, f=20kHz, Iavg=7.5A (Irms=8.3A),
Iclamper ≈0.4mA, Ploss ≈ 0.4W



Extension to series-connection of 
2n SiC MOSFETs
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Pre-defined modulation scheme(n-1) clamping circuits for 2n SiC MOSFET



Extension to series-connection of 
2n SiC MOSFETs

21

 Extension to DC-DC topologies
 Isolated resonant dc-dc converters
 Isolated DAB converters
 Other multi-level isolated dc-dc converters



Hardware Parameters
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Parameters Value Parameters Value
Cf1 68nF DCBUS Voltage 2kVDC

Zener Voltage 1060V Load Voltage 1.2kVAC
Zener Resistance 36kΩ Load Current 8.7A

R2&R3 10MΩ Deadtime 0.5us
SiC MOSFET 1700V/45mΩ Δt 1ns

Inductor 6mH Switching freq 20kHz



Waveforms under rated current and 
rated DCBUS voltage
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 Validate the effectiveness of proposed hybrid clamping technique under 
any current, voltage, power factor

 Negligible voltage spike for inner MOSFET due to minimized commutation 
loop. Voltage ringing for outer MOSFET will be optimized.

CH1: Vds1 500V/div

CH4: Vo 1kV/div

CH3: Io 10A/div

CH2: Vds2 500V/div

CH1: Vds1 500V/div

CH4: Vo 1kV/div

CH3: Io 10A/div

CH2: Vds2 500V/div



Low power dissipation on clamping 
circuit
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 Power dissipation on zener diodes is around 0.5W
 Power dissipation on start-up resistors is around 0.1W

VMOV/V iMOV/mA PMOV/W Temperature/°C
834 0.23 0.123 31
540 0.52 0.281 36
550 1.10 0.605 50

Temperature of TVS under different leakage current



Dual Active Bridge Design

• Dual active bridge topology

• Leakage inductance selected to allow soft 
switching over entire operating range

• Transformer turn ratio of 3:1

• All-SiC solution with 1700V modules on 
MV and 1200V modules on LV side

• Switching frequency of 20kHz, with 
module interleaving on the LV bus
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DAB Converter
Input & Output 

voltage 2150 V & 750 V

Power level nominal 83.3 kW
fsw 20 kHz



DAB Control and Modulation

• A proportional-integral-resonant (PIR) compensator eliminates 2nd harmonic 
oscillation on the MV DC bus

• A bidirectional phase-shift modulator (BPSM) with capacitor voltage balancing 
(CVB) generates the gate pulses for the primary and secondary bridges of the DAB
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Capacitor Voltage Balancing
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𝑡 
0 

𝑛𝑣𝑠  𝑣𝑝  𝑖 𝑖𝑜  

0 

𝑡 

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 

𝑡2 𝑡1 𝑡3 
𝑡5 𝑡4 𝑡6 

𝑑2𝑇ℎ  

2|𝑑𝐵|𝑇ℎ 𝑉1 = 𝑛𝑉2 

−𝑣𝑈  

𝑣𝑈  

Charging the upper capacitor irrespective of direction of 
transformer current

𝑖 > 0 𝑖 < 0 

(𝑎) For 𝑖 < 0 (𝑏) For 𝑖 > 0 Dashed lines correspond to voltage balanced operation 
(𝑣௎ = 𝑣௅) and solid lines show correspond to 𝑣௎ < 𝑣௅



Power Stage Design

• Target efficiency is 98.9% at the cost of lower power density and underutilized switching 
capability of SiC devices; 20 kHz is selected based on loss analysis
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Rohm 1.2 kV 300 A 
SiC MOSFET Cree 1.7 kV 325 A 

SiC MOSFET 

S1

S3

S2

S4

Cs

S9

Vp Vs

S10

S11

S12

D1

D2

N1:N2

C1

C2

Cb

S5

S7

S6

S8

IXYS 1.8 kV 25 A 
Si diode module

0

500

1000

1500

20 kHz 35 kHz 50 kHz

To
ta

l L
os

se
s

Swtiching Frequency

905 W

DC-DC Eff:
98.6%

DC-DC Eff: 
98.3%

1148 W

1443 W

DC-DC Eff:
98.9%



Commutation Loop Optimization

• Innovative multi-layer implementation minimizes the parasitic inductance in this loop, 
minimizing voltage overshoot and therefore device stress

29
Inner switch turns onCommutation loop in physical setup
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S2
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Vp

D1

D2
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C1

C2

Cb

S5

S7

S6

S8

Hard turn-on, 
negligible 
ringing Upper inner 

switch:[250V/div]

Upper diode:
[250V/div]

Upper outer 
switch:[300V/div]

Lower outer 
switch:[300V/div]

Around 120V overshoot

Outer switch turns off



DAB Stage Testing

• Successfully tested DAB stage at 95 kW (115% of rated load) 

• Efficiency is measured at 98.9%

• Hotspot below 70ºC in steady-state (less than 50ºC temperature rise)

• Low voltage overshoot on device drain-to-source voltage
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High Isolation Power Supply

• High isolation voltage is achieved through loosely coupled transformer. 

• The partial discharge inception voltage reaches 15 kV (target 40kV). Extinction voltage 
above 10 kV.

• Small parasitic capacitance (1.2pF) provides superior common mode noise rejection.

• Developing potting procedure that allows for reliable and repeatable results.
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Gap between 
cores

Potting material Charge goes beyond 15.6 kV at 10 pC



SST Module Prototype
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Active front-end DAB MV side Transformer DAB LV side
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Thanks!

34


