FREEDIN SYSTEMS CENTER

A Novel Data Segmentation Based Approach for Meter Topology Identification

> Hanpyo Lee Ph.D. Candidate Feb 20. 2023

FREEMS CENTER

Background

NC STATE UNIVERSITY

- Motivation
 - Require frequent updates
 - Input errors are inevitable
 - Approximately 6% mislabeled meters
 - Manual checking is labor intensive
 - Need to automate the process
- Two Objectives
 - Phase identification
 - Known meter-phase-label
 - Unknown meter-phase-label
 - Pairing identification

Lee, H.P., Rehm, P.J., Makdad, M., Miller, E. and Lu, N., 2022. "A Novel Data Segmentation Based Approach for Meter Topology Identification using Smart Meter Voltage and Power Measurements". *arXiv preprint arXiv:2210.00155*.

Phase Identification

• Case 1) Known meter-phase-label

• Case 2) Unknown meter-phase-label

Lee, H.P., Rehm, P.J., Makdad, M., Miller, E. and Lu, N., 2022. "A Novel Data Segmentation Based Approach for Meter Topology Identification using Smart Meter Voltage and Power Measurements". *arXiv preprint arXiv:2210.00155*.

Flowchart of Phase Identification

[Fig. Flowchart of the data-segmentation based phase identification methodology.]

NC STATE

[Case 1] Pearson Correlation Coefficient

 Meters on the same phase have a stronger voltage timeseries correlations than meters on different phases

SYSTEMS CENTER

NC STATE

UNIVERS

FREEN: SYSTEMS CENTER

[Case 1] Circuit Analysis

NC STATE UNIVERSITY

- Voltage Correlation
 Deterioration Phenomenon
- Basic connection types:
 - in-parallel
 - partially-parallel
 - in-series

$V_i = V_T - IR - I_iR_i$	(2)
$V_j = V_T - IR - I_jR_j$	(3)
$I = I_i + I_j$	(4)

[**Fig.** (a) Three typical types, (b) PCC between V_i and V_j for three types, (c) Box plots of PCC between V_i and V_j for three types.]

[Case 1] Data Segmentation Algorithm

SYSTEMS CENTER

NC STATE

UNIVERSITY

8

$$P^{-} \leq P_{i,t} \leq P^{+}, \quad T_{dur} \leq m_{i,k} \Delta T \quad (5) \qquad PCC(V_{i}^{M}, V_{j}^{M}) = \frac{\sum_{k=1}^{K} (V_{i}^{m_{k}} - \overline{V_{i}^{M}})(V_{j}^{m_{k}} - \overline{V_{j}^{M}})}{\sqrt{\sum_{k=1}^{K} (V_{i}^{m_{k}} - \overline{V_{i}^{M}})^{2}} \sqrt{\sum_{k=1}^{K} (V_{j}^{m_{k}} - \overline{V_{j}^{M}})^{2}}} \quad (7)$$

$$P^{-} \leq P_{j,t} \leq P^{+}, \quad T_{dur} \leq m_{j,k} \Delta T \quad (6) \qquad D(V_{i}^{M}, V_{j}^{M}) = 1 - |PCC(V_{i}^{M}, V_{j}^{M})| \quad (8)$$

- Correlation by different power bands and minimum durations
 - $-\mu$: mean, σ : standard deviation, %n: share of total segments

SYSTEMS CENTER

					P	ower ba	nd [P ⁻ P	+]				
T _{dur} [h]		0~2 [kW]]	:	2~4 [kW]]	:	2~8 [kW]]	2< [kW]		
	μ	σ	%n	μ	σ	%n	μ	σ	%n	μ	σ	%n
0.5	0.48	0.10	38.4	0.29	0.25	16.2	0.27	0.18	34.2	0.27	0.18	34.2
1.0	0.48	0.09	21.4	0.35	0.29	14.1	0.28	0.19	15.4	0.28	0.18	16.0
1.5	0.49	0.09	14.4	0.46	0.25	19.3	0.34	0.20	13.0	0.33	0.20	13.1
2.0	0.51	0.09	10.7	0.51	0.23	18.8	0.39	0.21	13.1	0.38	0.20	12.8
2.5	0.54	0.09	8.8	0.53	0.21	16.9	0.43	0.20	12.6	0.42	0.20	12.4
3.0	0.56	0.09	6.7	0.54	0.21	14.7	0.46	0.20	11.7	0.44	0.20	11.5

[Table. Correlation Statistics of Data Segments by the $[P^- P^+]$ and T_{dur} for a real feeder.]

NC STATE

UNIVERS

[Case 1] Performance Improvements

Correlation matrices before and after applying data segmentation

SYSTEMS CENTER

[Without data segmentation]

[With data segmentation]

NC STATE

UNIVERSITY

[Case 1] Assign Predicted Phase Labels

- Hierarchical clustering: Divide meters into the optimal number of groups
- Majority vote: Assign predicted phase labels to meters for each cluster

SYSTEMS CENTER

[Fig. Hierarchical clustering result of a real feeder.]

[Fig. Hierarchical clustering and a majority vote.]

NC STATE

UNIVER

FREEMS CENTER

- Input data and parameter settings
 - 1 synthetic and 13 real feeders (15-min rez., 3,961 meters)
 - Power band $[P^-P^+]$, minimum duration T_{dur} , and number of clusters

Dete	F ooder Ne	Optimal parameter values								
type	(No. of meters)	[<i>P⁻ P</i> ⁺] [kw] [0.5 2.0]	<i>T_{dur}</i> [h] [1.0 3.0]	3 × n [3 36]						
	Synthetic (1,100)	[0.8 1.2]	1.0/1.5	12						
Real	1 (33), 3 (73), 11 (24)	[0.8 1.2]	1.0/1.5	6						
	8 (173), 10 (131), 12 (108), 13 (137)	[1.3 1.7]	2.5/3.0	18						
	2 (450), 4 (399), 5 (605), 6 (803), 7 (324), 9 (556)	[1.3 1.7]	1.0/1.5	36						

[Table. Parameter selection of synthetic and real feeders.]

FREENTS CENTER

[Case 1] With Utility Given Phase Labels

	Phas	es in the	utility re	cords	Phases	s predict	ed by the	algorithm		Ro	ound 1					
Feeder No.	Α	В	С	A+B+C (N _{RT})	Α	В	с	A+B+C (N _{PT})	Detected as correct (N _{C1})	Detected as incorrect $(N_{\rm RT} - N_{\rm C1})$	Validated (N _{V1})	$\frac{\text{Accuracy}}{((N_{C1}+N_{V1})/N_{RT})}$	Detected as correct (N _{C2})	Detected as incorrect $(N_{\rm RT} - N_{\rm C2})$	Validated $(N_{\rm V2})$	Accuracy $((N_{C2}+N_{V2})/N_{RT})$
Proposed	ĺ															
Synthetic	436	293	371	1,100	436	293	371	1,100	1,100	-	-	100%	1,100	-	-	100%
1	7	24	2	33	5	25	3	33	31	2	-	93.9%	31	2	-	93.9%
2	146	159	145	450	139	152	159	450	415	35	35	100%	447	3	-	99.3%
3	11	26	36	73	11	26	36	73	73	-	-	100%	73	-	-	100%
4	147	91	178	416	144	94	178	416	399	17	10	98.3%	411	5	-	98.8%
5	192	214	231	637	210	218	209	637	605	32	24	98.7%	629	8	-	98.7%
6	344	249	306	899	363	262	274	899	803	96	80	98.2%	898	1	-	99.9%
7	113	102	109	324	115	104	105	324	313	11	5	98.1%	318	6	-	98.1%
8	51	51	71	173	49	53	71	173	169	4	2	98.8%	171	2	-	98.8%
9	62	193	301	556	57	194	305	556	505	51	35	97.1%	543	13		97.7%
10	22	42	67	131	22	42	67	131	131	-	-	100%	131	-	-	100%
11	3	10	11	24	3	10	11	24	24	-	-	100%	24	-	-	100%
12	39	37	32	108	39	37	32	108	108	-	-	100%	108	-	-	100%
13	55	56	26	137	55	56	26	137	137	-	-	100%	137	-	-	100%
Total	1,192	1,254	1,515	3,961	1,212	1,273	1,476	3,961	3,713	248	191	98.6%	3,921	40	-	99.0%
SC																
Synthetic	436	293	371	1,100	424	276	400	1,100	1,063	37	-	96.6%	1,063	37	-	96.6%
1	7	24	2	33	9	24	-	33	29	4	1	90.9%	30	3	-	90.9%
2	146	159	145	450	158	155	137	450	435	15	8	98.4%	441	9	-	98.0%
3	11	26	36	73	11	24	38	73	70	3	-	95.9%	70	3	-	95.9%
4	147	91	178	416	164	80	172	416	397	19	12	98.3%	408	8	-	98.1%
5	192	214	231	637	204	221	212	637	606	31	16	97.6%	619	18	-	97.2%
6	344	249	306	899	347	250	302	899	831	68	60	99.1%	893	6	1	99.4%
7	113	102	109	324	115	103	106	324	312	12	5	97.8%	318	6	-	98.1%
8	51	51	71	173	49	50	74	173	167	6	-	96.5%	167	6	-	96.5%
9	62	193	301	556	50	183	323	556	527	29	14	97.3%	532	24	2	96.0%
10	22	42	67	131	21	42	68	131	130	1	-	99.2%	130	1	-	99.2%
11	3	10	11	24	4	10	10	24	23	1	-	95.8%	23	1	-	95.8%
12	39	37	32	108	39	37	32	108	108	-	-	100%	108	-	-	100%
13	55	56	26	137	55	56	26	137	135	2	-	98.5%	135	2	-	98.5%
Total	1,192	1,254	1,515	3,961	1,226	1,235	1,500	3,961	3,770	191	116	98.1%	3,874	87	3	97.9%

Flowchart of Phase Identification

[Fig. Flowchart of the data-segmentation based phase identification methodology.]

NC STATE

FREENS CENTER

[Case 2] Ensemble Clustering

- Generate a clustering with different parameters
 - $[P^-P^+]$, T_{dur} , and # of group
- As a consensus function, similarity matrices are used
 - CA (Co-Association) and CTS (Connected Triple-based Similarity)
- Obtain the final cluster (π^*) from the cluster ensemble

[Fig. The general framework of cluster ensembles.]

NC STA

SYSTEMS CENTER

- For clustering generation, 10 parameter combinations are used
 - $5 \times P^+$, $2 \times T_{dur}$, and $1 \times \#$ of groups
- Significantly reduces the number of required field inspections for utility engineers

NC STATE

UNIVERS

Compute D_h

from PCC_h

 D_1, \dots, D_{10}

Hierarchical **Clustering using** optimal cluster number (3n*)

FREE [Case 2] Without Utility Given Phase Labels

NC STAT	Ε
UNIVERSIT	Y

	Phas	es in the	utility re	ecords	Phases	predicte	d by the	algorithm		Ro	ound 1					
Feeder No.	Α	в	С	A+B+C (N _{RT})	Α	В	с	A+B+C (N _{PT})	Detected as correct (N _{C1})	Detected as incorrect $(N_{\rm RT} - N_{\rm C1})$	Validated (N _{V1})	Accuracy $((N_{C1}+N_{V1})/N_{RT})$	Detected as correct (N _{C2})	Detected as incorrect $(N_{\rm RT} - N_{\rm C2})$	Validated (N _{V2})	Accuracy $((N_{C2}+N_{V2})/N_{RT})$
Proposed																
Synthetic	436	293	371	1,100	436	293	371	1,100	1,100	-	-	100%	1,100	-	-	100%
1	7	24	2	33	7	25	1	33	31	2	-	93.9%	31	2	-	93.9%
2	146	159	145	450	133	153	164	450	412	38	37	99.8%	444	6	4	99.6%
3	11	26	36	73	11	26	36	73	73	-	-	100%	73	-	-	100%
4	147	91	178	416	152	90	174	416	407	9	6	99.3%	402	14	4	97.6%
5	192	214	231	637	213	218	206	637	606	31	25	99.1%	630	7	-	98.9%
6	344	249	306	899	330	253	316	899	796	103	103	100%	898	1	-	99.9%
7	113	102	109	324	114	104	106	324	314	10	4	98.1%	315	9	1	97.5%
8	51	51	71	173	49	54	70	173	170	3	-	98.3%	170	3	-	98.3%
9	62	193	301	556	36	174	346	556	505	51	40	98.0%	548	8	-	98.6%
10	22	42	67	131	22	42	67	131	131	-	-	100%	131	-	-	100%
11	3	10	11	24	3	10	11	24	24	-	-	100%	24	-	-	100%
12	39	37	32	108	39	37	32	108	108	-	-	100%	108	-	-	100%
13	55	56	26	137	55	56	26	137	137	-		100%	137		-	100%
Total	1,192	1,254	1,515	3,961	1,164	1,242	1,555	3,961	3,714	247	215	99.2%	3,911	50	9	99.0%
CAM-EC																
Synthetic	436	293	371	1,100	406	276	418	1,100	1,053	47	-	95.7%	1,053	47	-	95.7%
1	7	24	2	33	6	24	3	33	27	6	1	84.8%	28	5	-	84.8%
2	146	159	145	450	155	159	136	450	435	15	8	98.4%	441	9	-	98.0%
3	11	26	36	73	18	20	35	73	65	8	-	89.0%	65	8	-	89.0%
4	147	91	178	416	165	77	174	416	394	22	12	97.6%	400	16	-	96.2%
5	192	214	231	637	205	218	214	637	606	31	16	97.6%	619	18	-	97.2%
6	344	249	306	899	322	248	329	899	803	96	88	99.1%	895	4	-	99.6%
7	113	102	109	324	115	104	105	324	313	11	5	98.1%	318	6	-	98.1%
8	51	51	71	173	49	46	78	173	165	8	-	95.4%	165	8	-	95.4%
9	62	193	301	556	58	182	316	556	526	30	16	97.5%	521	35	-	93.7%
10	22	42	67	131	21	42	68	131	130	1	-	99.2%	130	1	-	99.2%
11	3	10	11	24	4	10	10	24	23	1	-	95.8%	23	1	-	95.8%
12	39	37	32	108	37	39	32	108	106	2	-	98.1%	106	2	-	98.1%
13	55	56	26	137	55	56	26	137	135	2	-	98.5%	135	2	-	98.5%
Total	1,192	1,254	1,515	3,961	1,210	1,225	1,526	3,961	3,728	233	146	97.8%	3,846	115	0	97.1%

Lee, H.P., Rehm, P.J., Makdad, M., Miller, E. and Lu, N., 2022. "A Novel Data Segmentation Based Approach for Meter Topology Identification using Smart Meter Voltage and Power Measurements". *arXiv preprint arXiv:2210.00155*.

Back-up Data

[Case 1] Optimal Number of Groups

NC STATE

P^- is fixed to zero

SYSTEMS CENTER

- P^+ is increased from 0.5 to 2
- Although the number of clusters increased from 6 to 9, the accuracy converges without increasing for most parameter combinations

Feeder Length	# of clusters
Short	6
Medium	12
Long	36

[**Fig.** Phase identification accuracy for three different numbers of clusters with varying parameters in Feeder 3. The accuracy of most parameter combinations converged when $3n^* = 6$.]

Pairing Identification

- NC STATE UNIVERSITY
- Case 3) Which transformer is the meter connected to?

SYSTEMS CENTER

[Case 3] Flowchart of Pairing Identification SYSTEMS CENTER

No

False positive

Stage 2) Data segmentation-based verification Eliminate false positives

✓ Average PCC

[Fig. Flowchart of the data-segmentation based, twostage transformer-meter pairing identification algorithm.]

GIS or field check

Mislabeled

Yes

NC STATE

UNIVERSI

Yes

FREENS CENTER

[Case 3] Topology Relationship

NC STATE UNIVERSITY

Relationship of a pair of meters:

- $M_0 M_1$: same 1-ph transformer
- $M_0 M_2$: different DTs on the same phase
- $M_0 M_3$: different DTs on different phases

Average PCC	Power bar	id [P ⁻ P ⁺]
difference between cases	0~2 [kW]	2< [kW]
$PCC_{M_0M_1} - PCC_{M_0M_2}$	0.2443	0.3859
$PCC_{M_0M_1} - PCC_{M_0M_3}$	0.3046	0.4269
$PCC_{M_0M_2} - PCC_{M_0M_3}$	0.0603	0.0411

[**Table.** Average PCC difference between cases by power band in a real feeder.

(b) Boxplots of PCCs between V_i and V_j for a real feeder.]

SYSTEMS CENTER

						Staç	je 1	Stage 2							
Feeder No.	NO. OF DTs	NO. Of meters	ID	IDT2	ID _{szn}	IDT2 _{szn}	Total (N _{T1})	Validated (N _{V1})	N_{V1}/N_{T1}	ID	IDT2	Total (N _{T2})	Validated (N _{V2})	N_{V2}/N_{T2}	
1	9	33	2	1	1	1	1	-	-	-	-	-	-	-	
2	66	450	25	13	21	12	21	3	14.3	4	6	6	3	50.0	
3	16	73	3	3	3	3	3	-	-	-	-	-	-	-	
4	78	416	7	2	7	2	7	-	-	-	-	-	-	-	
5	143	637	28	14	26	13	28	2	7.1	2	3	3	2	66.7	
6	155	899	15	15	12	12	14	3	21.4	3	3	3	2	66.7	
7	78	324	5	1	5	1	5	-	-	-	-	-	-	-	
8	24	173	-	-	-	-	-	-	-	-	-	-	-	-	
9	118	556	39	10	30	9	32	4	12.5	3	2	4	0	0.0	
10	54	131	6	2	6	2	6	1	16.7	1	2	2	1	50.0	
11	8	24	-	-	-	-	-	-	-	-	-	-	-	-	
12	40	108	1	-	1	-	1	-	-	-	-	-	-	-	
13	37	137	5	3	5	3	5	1	20.0	1	1	1	1	100	
Total	826	3,961	136	64	117	58	123	14	11.4	14	17	19	9	47.4	

NC STATE

UNIVERSITY