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Introduction



Energy Storage Options for North
Carolina

Favorable conditions for energy Energy storage capacity greater
storage technologies to assist in than 1 GW would be economically
managing the grid operation | viable considering prices in 2030

Public utilities commission started Rorti Garcln T “ Recently Utilities started to
efforts to analyze energy storage S include energy storage in their
systems in the North Carolina (NC) | . :
l R integrated investment plans
State Congressional e
Order HB589 of 2017 for As of 08/2020 the state's largest Li-
carvouts of Solar “““ - lon battery system was deployed in
Asheville 9 MW ($15 million)

GenerahT In NC

Technical study to determine the
value of energy storage systems
to NC consumers

There is still no significant state
incentive for energy storage




Peak Capacity Deferral

It refers to the practice of delaying the construction or
installation of new generation capacity until it is necessary to
meet peak electricity

How storage can contribute to postpone

investments in aeneration
4

Future generation
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Hourly steps ordered by descending demand magnitude



Bulk Energy Time Shifting

Practice of shifting the delivery of large amounts of energy from
one period to another. Take advantage of differences in
demand & prices
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APPLICATIONS

Hafiz, F., de Queiroz, A.R., Fajri, P., Husain, |., (2019) Energy management and optimal

storage sizing for a shared community: A multi-stage stochastic programming apg)roach,

] ] ) ] ) Applied Energy, 236; 42-54
Hafiz, F., Awal, M.A., de Queiroz, A.R., Husain, ., %02%) Real-time Stochastic Optimization of Energy Stora?e
_| Management using Deep Learning based Forecasts for Residential PV Applications, IEEE Transactions on Indus rg
* Apbplications. 56(3): 2216 — 222




Modeling Approach & Assumptions



Optimization Model Overview

Energy system optimization model; o The TEMOA Project
(Temoa) used for two purposes:

Capacity expansion planning (CEP!

for the area in analysis under \ .
different scenario configuratiorrs™ - — e
] Patankar, N., Eshraghi, H., de Queiroz, A. R., & DeCarolis, J. F. i e

(2022). Using robust optimization to inform US deep I I I [t o Cobtion Tt
decarbonization planning. Energy Strategy Reviews, 42, 100892 RS e
Operational dispatch considering u
system configurations from CEP

and different deployment of
storage technologies —
[ERE T de Queiroz, A. R., Mulcahy, D., Sankarasubramanian, A.,
Deane, J. P., Mahinthakumar, G., Lu, N., & DeCarolis, J. F.
- (2019) Repurposing an energy system optimization model for
seasonal power generation planning. Energy, 181, 1321-1330
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https://github.com/TemoaProject
http://temoaproject.org/

MW

Marginal Price ($/MWh)

Approach, Data and
_ Assumgtions

=> | Temoarun | ™
:_> (Capacity ‘

= Expansion) b

*Assume a fixed
duration (energy to
power ratio) and

Nuke m Coal Gas RE eﬁl(ﬂency
cost &=  Temoarun |, |
: o onal No energy storage is
e Hourly - ( peratlona considered in the initial
. Dispatch) operational dispatch
generation = | 3760 hours in 2030 s
1 3 5 7 9H11 1f3D15 17 19 21 23 dispatches l ll
our of Day .
N Run different &= | Minimize operational
50 stor?ge-s?e . costs with storage
20 configurations -
. g «= | Calculate change in
S s s s ennsnnaas | Determine cost- production costs
Hour of the Day . .
optimal build plan

- Storage
for storage 7 —2un sensitivitie$|: technologies

- Storage costs
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Data & Assumptions
-

Carolina’s power system

- System representation: ) 1.2% Increase per year
; 0119_;4)12 MW avg demand 39185 MW peak demand (2030
. -33556 MW peak demas ﬂ
A ;L o It . o (2|01 7)//,

.. T <—— Power Interchanges

o Existing power generators represented as individual power plants
o Future generators grouped by their respective generation class

_ EIA Annual Electric Generator data, form
= Sources.:{} ElA electric utility data survey, form

NREL Annual Technology Baseline -
NREL Solar and Wind Energy Resource Assessment -


https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/electricity/data/eia923/
https://www.eia.gov/realtime_grid/#/status?end=20180625T10
https://atb.nrel.gov/
https://openei.org/wiki/Solar_and_Wind_Energy_Resource_Assessment_(SWERA)

Analysis Scenarios
-

« 2017 Carolinas Power generation system

Base case )« HB589 solar PV deployments (5.9 GW by
2022)
* Fixed representation of the exchanges
DUke |RP > * Scenario matches the build-outs proposed by Duke’s 2
IRP

Expanded RF&> * RPS expanded to 2030 with a target of 40% for

renewables (solar, wind, biomass, small hydro)

Clean Enel’gy StandaE‘:} * 60% target of clean energy sources by
2030

Ca rbon Ca p|:> * Duke’s 2017 Climate Report to Shareholders:

40% reduction in 2005 CO, emissions levels
. by 2030
Natural Gas Pricez=====). High Projection from EIA AEO 2018

Deployment of Plug-in Electric Vehicles



Results — North Carolina Case



Base Case — Installed Capacity

Capacity [GW]
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Charging/Discharging Profile - LI-

1GW/4GWh
]
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Cost-Benefits Assessment

Energy Savingﬁﬁ Operational dispatch costs with storage
ESik — TCNS — TCl' Vi €I, Vk €K

| » Operational dispatch costs without

CapaCity Value sTto:age Cost of new entry Gas CT ($/kW-year)
CV} = (ECP; x P; )CONEvie,vkex

Capacity (kW)

- > Capacity credit
Total Benefits %)

SB;lc = ESl.k 4+ CVl.k Vi eI, vk € K

argmaX{SBik — (Pl X RR{C)} R s
’ — Storage revenue requirement ($/kW-

*CONE for a G\gesag_’_ estimated at 113 ($/kW-year)



Total Benefits vs Revenue

Reﬂuirements

Total net benefits ($/kWyr) of lithium-ion batteries and pumped hydro
for shifting energy over time and deferring new investments in

Anonoaratinng
JPI 1IN 1 CALUTULI
uration

3 I (2019) LI (2030)
(h)  0.3GW 1GW 3GW 5GW 0.3GW 1GW 3GW 5GW/| ] PSH
1 100 -101 -102 -100| -13 -14 -15 -13 duration
Base Case 2 80 81 -84 86| 12 11 8 6 (h) 0.3GW__1GW _3GW 5GW)
4 117 119 125 -131 5 3 4 10 Base Case 3 53 47 30 14
1 = e 0 -10 14 -14 Duke IRP 3 64 48 29 12
Duke IRP| 2 67 78 8 86| 25 14 9 6| Expanded REPS 8 110 94 75 o6l
4 105 FUTERoe 5 EEL Clean Energy Standard 8 67 60 45 30
1 U 0 3 8 9 X
EXI{)Elll:;ed 2 8 65 79 75| 41 27 20 17 Carbon Cap 8 73 67 52 38
4 80 95 -105 -111l| 42 o 17 11 High Natural Gas Price 8 111 33 56 34
Clean 1 S 12 12 14 14 Electric Vehicles 8 26 27 12 =il
Energy 2 SO o 13 11 9
Standard 4 SOOI o1 7 2 3
Casbon 1 97 98 100 00| -10 -11 -13 -13 We can observe that several
cp |2 B H S BT 2 configurations of Li-lon and PSH
4 N 12 10 5 0 o )
mgh | 1 [(95 ® 95 91l s o s 0| would provide positive benefits
Natural 2 42 64 -73 76| 50 28 19 16 .
Gas Price 4 70 94 107 00l6]l 52 28 14 6 tO the NC System prOJeCted tO
Hleotsic 1 111 106 -105 -105] 24 -19 -18 -18 2030
Vehiclos 2 93 88 -89 - 4 4 & 4
4 134 131 B 12 9 14 21



https://energy.ncsu.edu/storage/
https://energy.ncsu.edu/storage/wp-content/uploads/sites/2/2019/02/NC-Storage-Study-FINAL.pdf

Impacts of Storage in Dispatch Costs - Brazil




Modeling Framework — Brazilian

sttem
]

* Hydro-dominant Power System (~70% of production of 65GWavg) o € Operador Naciona

“H do Sistema Elétrico

* Individual Hydro and Thermal Plants Representation
* Interconnection between Regions PORTAL SINTEGRE <
* De-rating factor, efficiency, capacity factor, and transmission losses

Hourly
; information

- NEWAVE TEMOA by region
Sudeste / -‘-I:I = iy i a g » VK] L SOIar
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* Energy Exchanges between Regions

* Total Operational Costs | ABSOLAR



Results — 1GW/4h Deployed in the

Northeast
S
Optimization model decides to charge Case: Deployment

energy storage off peak and discharge at of 1GW/4h NE

Power Generation [GW h]




Results — 2GW/8h Deployed in the
Southeast

Geracao simulada para dia 15012021 **" Eff-eclts in .....
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Impacts in Total Operational Dispatch

Costs
S
Operational Costs Yearly + % *
- Caso Base RS 3,095,735,478.81 - -
§ 0.5GW/4h NE | R$ 3,027,438,253.09 | RS 68,297,225.72 2.21%
z 1GW/4h NE R$ 2,968,356,135.78 | R$ 127,379,343.03 | 4.11%
2 2GW/4h NE R$ 2,873,845,056.25 | R$ 221,890,422.56 | 7.17%
= 4GW/24h NE R$ 2,802,850,998.80 | R$ 292,884,480.01 9.46%
2GW/Bh SE | R$2,721,487,681.82 | RS 374.247,796.99 | 12.09% |
Caso Base R$ 12,062,398,526.10 - -
2 0.5GW/4h NE | RS 11,986,997,334.80 | RS 75,401,191.30 0.63%
= 1GW/4h NE R$ 11,921,727,024.20 | R$ 140,671,501.90 1.17%
W 2GW/4h NE R$ 11,812,433,223.20 | R$ 249,965,302.90 | 2.07%
e 4GW/24h NE | R$11,821,421,457.50 | RS 240,977,068.60 2.00%
2GW/8h SE R$ 11,754,140,482.30 | RS 308,258,043.80 | 2.56%

Significant reductions in terms of total operational

dispatch costs, reaching 12% in a case with 2GW/8h of
pumped hydro storage placed in the Southeast region
of the country



Final Comments
-

This is the first comprehensive open-source modeling
effort to develop projections for the Carolinas power
system

It can be used to assess economic, technical, and policy
futures and provide valuable insights to decision makers

Model and analyze other scenarios, e.g.:

Bidirectional capabilities for EVs

100% of clean energy

Wider range of future fuel prices and policies
Framework adapted to investigate energy storage in Brazil

Collaboration with Polytechnic de Torino to look at Italy and
European cases



Thank You !

adequeiroz@nccu.edu
ardequei@ncsu.edu
https://ardequeiroz@github.io

NORTH

Raleigh, February 2023
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