A Resilient Energy Management Framework Design For Community Microgrid Assisted Load Restoration

Presentation for NCSU FREEDM Annual Symposium 2023

Resilient Energy Management System Design

Ashwin Shirsat

North Carolina State University

Hitachi Energy Research

Ashwin Shirsat, Scientist

© 2023 Hitachi Energy. All rights reserved.

HITACHI **Inspire the Next**

Our R&D team is present in **20+ countries** and we have Research Centers in **seven countries**

Researcher on Power Systems and Protection

DER Management and Microgrid Controls Scientist

R&D Scientist in Automated Trading and Energy Market Analytics

A Resilient Energy Management Framework Design For Community Microgrid Assisted Load Restoration

Presentation for NCSU FREEDM Annual Symposium 2023

Resilient Energy Management System Design

Ashwin Shirsat

North Carolina State University

Extended Duration Power Outages – An Increasing Likelihood Event

 Frequency and likelihood of extended duration outages is increasing due to climate change and cyber-security threats.

(Source: NOAA)

Goal

With minimum network reinforcements, improve the network ability to absorb and recover from impacts caused by extreme events.

Resilient Energy Management System Design

Challenges Faced while Operating During Extreme Events

• Operating the electric grid under extreme weather events or cyber-attacks comes with numerous challenges.

Motivation

(Source: US DOE)

- Microgrid is a group of interconnected distributed generation resources and loads that operate within defined electrical boundaries.
- Advantages:
 - 1. Enhance local reliability and power quality.
 - 2. Energy surety during emergency conditions.
 - 3. Grid support functionality provision.
 - 4. Smoothing of intermittent and volatile resources.

Objective

- Secure operation for extended duration using microgrid.
- Maximize load served (priority to critical load).
- Minimize renewable generation curtailment.
- Robust against uncertainties.

Resilient Operation of Power Distribution Systems

Algorithm Level Uniqueness

Kang, Ning, Wang, Jianhui, Singh, Ravindra, and Lu, Xiaonan. Interconnection, Integration, and Interactive Impact Analysis of Microgrids and Distribution Systems. United States: N. p., 2017.

Resilient Operation of Power Distribution Systems

• Concept of dynamically changing CMG boundary:

Resilient Operation of Power Distribution Systems

• Concept of dynamically changing CMG boundary:

Microgrid-as-a-Service (MaaS)

Resilient Energy Management System Design

Ashwin Shirsat North Carolina State University

Proposed Energy Management System Design

Extended duration scheduling (EDS)

- Long-term hourly generation allocation.
- **Dynamic boundary** decision.
- Receding horizon stochastic optimization.

Objective: Maximize weighted load supplied.

Near real-time schedule update (NRT)

- Fine tune generation allocation for one hour.
- Fix slow responding generator setpoints.
- Demand response decisions.
- Deterministic optimization.

Objective: Minimize

 deviation from EDS reference.

Real-time dispatch (RT)

- Fine tune fast-responding generation output for 5 mins.
- Deterministic optimization.

Objective: Minimize PV curtailment.

Resilient Energy Management System Design

Multi-Feeder Resilient Load Restoration and Energy Management

- Until now, the emphasis was on the operation of a single community microgrid (CMG).
- Real world systems consist of multiple CMGs scattered over multiple feeders.
- Each CMG can have a different approach for energy management and load restoration.
- How to scale the proposed EMS system to perform restoration over large scale heterogenous networks?

Scalability and Modularity

Hierarchical Multi-Agent Approach

Hierarchical Multi-Agent Framework

First Hierarchy

- Central supervisory controller → cognitive agent coordinating load sharing between CMGs.
- CMG → reactive agent responding to load sharing and implementing locally computed decisions.

Second Hierarchy

- CMG-EMS → cognitive agent that computes the energy management decisions.
- Field devices → reactive agents responding to the instructions of the CMG-EMS.

Simulation Setup

Generator	Generator node	Rating (kW/kWh)	Initial Fuel/SOC
	13	900 kW	12000 Liter
DG^*	48	450 kW	6000 Liter
	160	900 kW	6000 Liter
PV^*	7, 250	750 kW, 750 kW	-
	65	500 kW/1000 kWh	75%
ES^*	108	$500 \; \rm kW/1000 \; \rm kWh$	75%
	250	$2750~\mathrm{kW}/5500~\mathrm{kWh}$	75%
BTM $PV^{\#}$	See Figure	3 to 15 kW	-

Resilient Energy Management System Design

OpenDSS Simulation Results – Base Case

Key takeaways

- Deterministic optimization → unable to perform well due to forecast errors + computationally light.
- Robust optimization → conservative + computationally heavy.
- Stochastic optimization → balanced performance but affected by forecast error.

Hardware-In-Loop Simulation Results – Base Case

- PCC voltage reference → 1.04 p.u.
- Line plot shows phase wise average voltage and voltage range across all nodes for different time intervals.
- Heatmap shows actual node voltage w.r.t. time.

Node voltage vs. time

Key takeaways

- Voltage → mainly stays within the specified ANSI limits.
- Momentary voltage variations → cause no severe operating limit violations.

Resilient Energy Management System Design

0.98, 0.99

1.00, 1.01 1.01, 1.02 1.02, 1.03 1.03, 1.04

.04. 1.05

(1.05, 1.06] (1.06, 1.07] (1.07, 1.08]

Multi-Agent Multi-Microgrid Approach for Resilient Energy Management

Key Takeaways

- Exchange of NGs from energy deficient CMG to energy rich CMG.
- 17.19% increase in average NG connectivity duration.
- Having avenue for reallocating NGs → increase served load.

Summary

Thank You! Any questions?

- <u>A. Shirsat</u>, et al., "Hierarchical Multi-timescale Framework For Operation of Dynamic Community Microgrid," *2021 IEEE Power & Energy Society General Meeting (PESGM)*, 2021. [Online]. Available: <u>https://arxiv.org/abs/2011.10087</u>
- <u>A. Shirsat</u> et al., "SA-HMTS: A secure and adaptive hierarchical multi-timescale framework for resilient load restoration using a community microgrid," 2022. Accepted for publication in IEEE Transactions on Sustainable Energy. [Online]. Available: <u>https://arxiv.org/abs/2202.05252</u>

