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= Market Drivers for Electric Transportation: Energy diversification, environmental concerns and
economic growth. Global sale of EVs that include both battery electric vehicles (BEVs) and plug-in hybrid
vehicles (PHEVs) exceeded the 6 million mark in 2021

= Innovation Opportunities: Increased telematics, autonomous vehicles, WBG power electronics,
lightweight electric machines, energy storage

= Charging Stations: Fast and Extreme Fast Charging Stations that will give the customer similar
experience as that in a gas station
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* Electric Machines and Inverters » Key components of Electric Powertrain
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Objectives for Traction Machines: —
« High density (Pgen, Tgen) . Low torque ripple R ——

« High efficiency (n)
« High speed operation (w)
 Low acoustic noise
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« Thermally stable
Structural integrity ]
« Low $/kW design 0
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Trends: .
« IPMSMs: Most popular with Rare Earth (RE) PMs. 'gyé’gﬁé‘ﬁf " Siver (A9
 Instability in RE’s price drives R&D for alternatives :
 Novel magnet and lamination materials, designs, E

and winding configurations P = i

Year

RE price vs gold & silver (source: Thomson Reuters)
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SYSTEMS CENTER Increase DC-link Voltage and Machine Speed

High Pole Design o Wide Band Gap (WBG) Drives
* Increases torque density « System power density increase
* Reduces end turn length « Better current regulation
« Reduces cost of PMs « System efficiency increase
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* Improves torque-density
* Improves overload capability

B Cumass HEPM mass
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Magnet Weight Minimization
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On-Board . .- . .
. Battery Battery +—7—> Bi-directional NN | erter Electric
Converter Motor
Charger
120 V AC/ . .
- Traction Drive System (APEEM)

240V AC
Fast Charger DC-DC Ancillary . )
Loads e Power electronics (APEEM - separate targets)

Electric propulsion system components

] Not in the program

» US Department of Energy targeted research for reduced rare-earth based electric machines

Traction Drive Systems (TDS) (;:vv;:r E(I,ix;::;cs((:;;.)

Reduce Red_uce Reduce 2010 79 10.8 8.7
Cost Weight Volume 2015 5 12 12

Cost Specific Power 2020 3.3 14.1 13.4

Year Power Density 2025 2.7 100
BILE, (kW/kg) (KWII) '

Electric Motors (EM)

2010 19 1.06 2.6
($/kW) | (KWikg) | (KWIT)
2015 12 1.2 3.5 2010 | 11.1 1.2 37
2020 8 1.4 4.0 2015 7 1.3 5
2025 6 33 2020 4.7 1.6 5.7
2025 | 3.3 50 0
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Department of Energy’s U.S. Drive roadmap 2025 targets a power density of 50 kW/liter for
electric vehicle traction motors:

160
______ ]_ = = Torque (peak)
. 140 s e Torque (cont.)
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Target Torque Speed Profile

Design of two motors which meet the target specifications while addressing the issues:
- Design I: Space-shifted Asymmetrical Dual Three Phase IPM Synchronous Machine, SS-ADTP IPMSM
- Design II: Outer Rotor Slotless SPM with Halbach Array and Winding Embedded Liquid Cooling
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« Excessive magnetic loss (Core and PM)

« High centrifugal forces on rotor pole ribs

« Skin and proximity effects become prominent

« Mechanical power losses increase

« Use of Amorphous Magnetic Material or super
core may reduce the core loss of the machines.

« Thinner lamination reduces mechanical strength
and maximum flux density

« Magnet demagnetization

« Thermal limits of heavy rare earth free magnet materials

« High dv/dt due to the short rise time and fall time increases the possibility of bearing damage,
insulation degradation, and first turn short of the winding

Simultaneous Electromagnetic, Structural and Thermal optimizations are essential during design stage
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Design 1: Space-Shifted Asymmetrical
Dual Three Phase IPMSM

Design 1 Features:

« Dual space-shifted windings

« Segmented magnets and rotor shape optimization
* Hiperco 50 steel laminations

* End winding potting with SC-320

HRE-Free Magnets & Potting
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12 slot, 10 pole , 3-® Winding » 12 slot, 10 pole , Dual 3-® Winding

High winding factor

Low cogging torque

Short end-turns

Rich harmonic content
High core and magnet loss
High rotor temperature

Increase in winding factor
Cancellation of subharmonic content
Increased fault tolerance

Slight increase in super harmonics
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~2.5% increase in winding factor winding and a 24 slot, 10 pole space shifted dual

Slightly higher copper loss (coil pitch =2) three phase machine 10
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= Standard V-type magnet arrangement

Segmented Magnets
& Widely established manufacturing process
= HRE-free Magnets Magnet Cavity———~
Rotor <« -~
== [Demagnetization risk at high temperature e
///

Fig: Single pole of the proposed magnet arrangement

Proposed Segmented Magnet Approach

Optimization I: maximize torque and minimize torque ripple

Segment magnet into several pieces to reduce eddy currents

Ma‘x(]-;zvg)ﬁMin(]-;‘ipple) = f(ML,MW)MTHETA’ x’ y9 TW? 7/)

Strengthen magnet in sections closest to the d-axis Subjectto 7, ,<33.3
MV (kg)<0.75

Optimization II: Demagnetization at worst case scenarios

Displace magnet in the cavity

Include demagnetization consideration in the rotor optimization Max (B, ,eviagne) = f(MLMW , M 111, X, y)
Subjectto /,  ,=33.3

¥ =90° 11
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Worst Case Scenario

= Maximum Current in the negative d-axis
at high temperature of 140°C and maximum
speed

1.4
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3D Flux density map of proposed  wininur ossr
segmented V-magnets
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Casell Caselll Casellll Case IV

Material

Stator Hiperco 50 Hiperco 50 HF-10

Rotor Hiperco 50 HF-10 Hiperco 50

Electromagnetic Performance
Torque @ peak load (Nm) 145
Output power density (kWI/L) 50

Iron Loss
Stator core loss @ full load and rated speed (W) 488.5 439.9
Rotor core loss @ full load and rated speed (W) 122.6 308.6

Electromagnetic Performance with Thermal Limit
Torque @ peak load (Nm) 145 132
Output power density (kWI/L) 50 46.3

Cost of stator ($ per-unit)

Cost of Rotor ($ per-unit)
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Next Steps
O Concept verified with a scaled prototype of ADTP ) _
winding structure using a model free predictive 0 Replace stator of a 2010 N|§san Leaf Motor with thg |
current controller* proposed 24-slot asymmetrical dual three-phase winding
. o and HF-10 core.
O Stator and rotor built for fabricating the 100 kW o _
prototype of Design |. Q0 Pot end winding with SC-324.
QO HRE-Free magnets acquired O Replace the rotor with the proposed 10-pole rotor with

HRE-free magnets and HF-10 core.
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Stator lamination Rotor lamination Spiral Water Jacket Housing Scaled prototype of ADTP winding |

i Vector Space
i
ko[ ) ESO 21 Decomposition

4

Virtual Vectors

Dual 3-® PMSM
Drive System block diagram

Back-EMF wéveforrh of
prototype ADTP winding

Winding Process

Rotor Shaft *S. Agoro and |. Husain, "Model-Free Predictive Current and Disturbance Rejection Control of Dual Three-Phase PMSM Drives using Optimal 15

Virtual Vector Modulation." in IEEE Journal of Emeraing and Selected Topics in Power Electronics: doi: 10.1109/JESTPE.2022.3171166.
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Design Il: Slotless HalBach Permanent Magnet Synchronous

Machine with Winding Embedded Li

Design Il Features:

Multi-segment halbach array

Slotless stator made from Coolpoly D5506 thermally

conductive plastic
Winding embedded liquid cooling

quid Cooling

BN o Rotor Support

Halbach Array

Winding Support
Windings

Liquid Cooling Channel
Stator Lamination

B Phase A
[0 PhaseB — Winding

B PhaseC

Coolant channel

Winding

Lamination
Thermally

conducting
winding support

16
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Design ll: Slotless Halbach PM

» HRE free PM in Halbach Array Rotor.

= Absence of rotor lamination and reduced stator lamination leads to low

thermal mass; needs good thermal management.

= Thermally conducting plastic winding supports with Winding Embedded

Liquid Cooling (WELC).

Rotor Support

Halbach Array
Winding

Winding Support
Stator Lamination
Phase A

Phase B Winding

B PhaseC

Schematic of Slotless Motor
with Halbach Array

18 36 54 72
Rotor position (mech. degree)

Torque Profile 17
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» The roadmap specifications of output

power, power density and efficiency
(>=97%) are met.
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FREE=MNS Prototype Design for a 10kW

SYSTEMS CENTER Slotless Machine with WELC

Parameters Value

= . . Rotor Outer Diameter 145
ins for insertion

into stator (mm)
e Length (End-turn included) 40

Thermally Conducting- Cooling (mm)
Winding Supports il Active Length (mm) 28
Stator Inner Diameter 94

(mm)

HF-19 NGO Steel
Lamination

Stator Outer Diameter

(mm) 135
Output Power (kW) 10.8
Power Density (KW/L) 28.2

CAD schematic of stator of slotless motor Fig. Zoomed in view of stator winding support Table. Parameters of the scaled-down prototype

with WELC showing cooling channel

19
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= Lamination and thermally conducting winding supports have been fabricated.
= Due to absence of laminated teeth, saturation within lamination is low.

= Using FEA, only a 6% difference in iron loss was found between HF-10 and Hiperco
laminations at the base speed point.

= Therefore, HF-10 non-oriented cobalt-free steel laminations are used in the prototype.

@) (b) ©

Fig. Prototype as fabricated: (a) Full stator (b) Lamination and (c¢) Winding Support with cooling channel 20
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= Winding supports constructed of D5506 thermally conducting polymer (9.6 W/mK)
fabricated using injection molding.

= Windings encapsulated in Resbond 906 (5.8 W/mK) ceramic epoxy. oy - s
= WELC concept validated for continuous current densities up L 4 '

893 .

to 19 A/mm? and peak current densities up to 39 A/mm?. 809

72.5
64.0 4,
55.6
47.2

38.7
I 30.3
21.9

Fig. Simulation temperature distribution
at continuous duty
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Fig. Prototype as fabricated: (a) Close up of winding supports, tube fittings, and . . . .
lamination (b) Coil assembly showing injection molded cooling channels and windings ° 200 400 000 800

Time (secs)

Fig. Experimental temp rise comparison at 12 A/mm21
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(Bi-axial Excitation Machine "\ ( Ceramic Winding )
= Rotor construction similar to WFSM with = Copper on ceramic (DBC, AMB, electroplated)
magnets embedded along g-axis substrate windings allow higher current
= Torque density comparable to WFSM (28 densities vs. conventional windings
Nm/L at 70 Nm) = Highly conductive thermal path from copper
= Uses non-rare earth ferrite magnets; low cost to coolant
also comparable to WFSM =  Winding volume and weight reduction
[ Un|ty power factor Operation |eads to u Ideal for S|Ot|eSS radial and aXiaI ﬂUX
inverter size and cost reduction machines

= 7.5 kW prototype under fabrication

%

Stator Yoke 60 1
Stator Tooth
Flux Barrier

8 g

Stator Slot
Ferrite Magnets

Torgue (Nm)
8 8

Rotor Windings

-
L=

Rotor Laminations

(=]

50 100 150
Rotor Position (degrees)

g J

o

22
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» Skateboard Chassis with Dual motors is a popular choice in automotive industry
> Si-IGBT inverters is still widely used, but SiC inverters are emerging

Traction Inverter:
v 90-350kW+ motor drive inverter
v Single, dual or in hub drives

Why SiC?

v Vehicle range extension

v’ Battery cost reduction

v' System cost reduction

v' Bi-directional energy flow for regenerative
breaking

SiC Advantages :

v' ~80% lower drive loss

v' ~30% smaller system size
v" Lower system cost

SiC Issues to be Solved :
v" Module cost

v Protection and Reliability
v' System EMI issues

Rear electric motors

Front electric motor

Charging point  Liguid cooled lithium-ion battery

4[ Audi E-tron Skateboard Chassis F

Tesla Model S Skateboard Chassis
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O SGD: a new strategy is proposed with adjustable Rg for the next switching cycle,
according to different inverter operating conditions (V4 and |,,), to minimize the switching
loss (E,,) and maintain the switching stress (V45 s and dv/dt) at the same time.

d  Benefits of SGD:

. Maintain the switching stress (Vs s and dv/dt) and reduce switching loss.
. Feedback on real-time variables (V4 |, and can be extended to Temperature, etc.)
. Slower requirement on dynamic control (us level).
. Good application in EV traction inverter: most of the time, low Rg is needed.
Inputs: L w e
SIOW Variab'es SGD ContrOI SyStem OutputS M/"ﬁﬂ—‘v-/'\ffu\/”’ {H“‘l’im el f P \\
[ \

| \
/ \

NS .

Green: Vehicle Speed (v); Blue: Traction Inverter Output
Current (/,,,); Red: Gate Resistance (R,) 24

Constraints
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—

EV Truck
Inverter (,

. Lm

Yokogawa WT3000
Power Analyzer 3- @ inductor: e WO
30uH/ 575A adjustable resistive
load bank

‘& - o aa

R

250kW, 800V SiC Inverter with > 98% efficiency

Inverter Test set-up at FREEDM

* An electric drivetrain is being developed for a Class 8 heavy duty truck funded by DOE-VTO

« The truck must meet DoE specifications for transport of materials to and from a shipping port,
with range of approximately 250 miles

- FREEDM provided inverter design and hardware testing support

D. Rahman, M. Kercher, W. Yu and |. Husain, "Comparative Evaluation of Current Sensors for High-Power
SiC Converter Applications," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021. 25
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