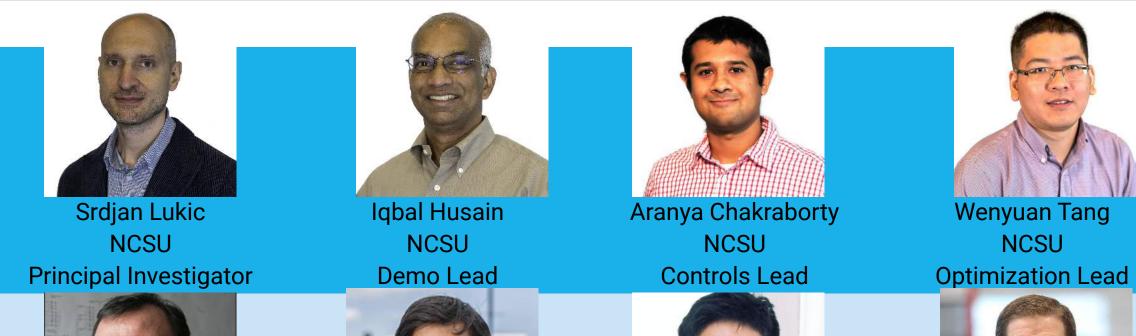


Microgrid Control/Coordination Co-Design (MicroC3)

Solving microgrid control and implementation challenges using a tool suite that designs an optimized microgrid and deploys its control implementation


Project Objectives

- Develop a toolsuite that systematically designs all aspects (plant & control) of a microgrid (MG), given a set of design objectives and performance constraints
- Tool predicts & achieves the desired MG performance & reliability metrics with significantly smaller and/or less capable & less expensive components.

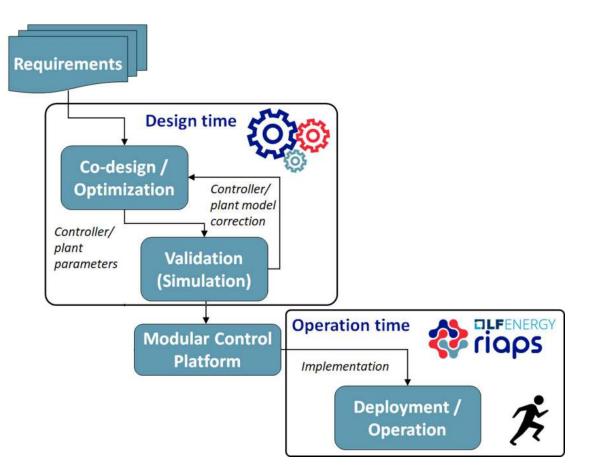
Metric	State of the Art	Proposed
Stability/Damping	Oversized DER stabilizes system; no guarantee of stability	Right-sized components coordinate to achieve stability; guarantee of stability
Reliability/Contingency planning	Achieved through redundancy/oversizing	Achieved through resource coordination and control
Plug & Play	Small generators/loads	Any generator/load

Project Team

Gabor Karsai Vanderbilt University Toolchain Dev. Lead

Abhishek Dubey Vanderbilt University Toolchain Dev. Co-Lead

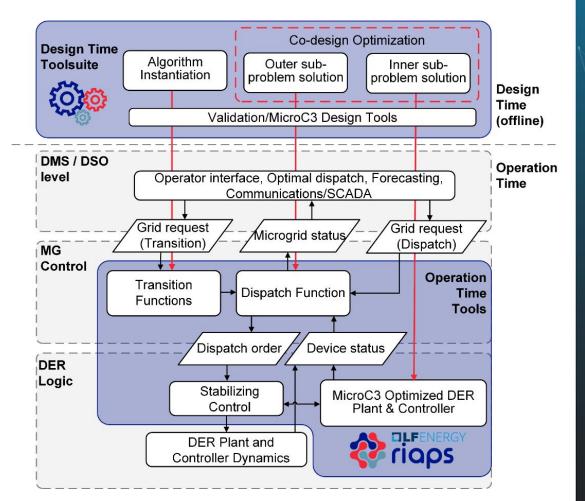
Honghao Zheng ComEd **Demo Partner**



Ken Dulaney NCSU T2M Lead

Approach

- Design tool identifies low-cost, non-trivial MG design (plant & control)
- Validation tool verifies predicted performance and generates implementation, including code and configurations for control, communications and coordination
- Implementation is executed on MCP: ARPA-E funded open-source platform (RIAPS) extended with time sensitive networking capabilities



MCP: Modular Control Platform; RIAPS: Resilient Information Architecture Platform for the Smart Grid

Key Outcomes

- Co-design formulation and solution that defines the MG design and implementation.
- Run-time Platform that implements TSN and provides visibility and control at primary, secondary and tertiary level
- Seamless integration into a single tool that starts with system sizing and delivers executable code on distributed controllers located at each asset.

TSN – Time sensitive networking

Project Milestones and Timeline

Go/No-Go Milestone (Q6)

- Co-Design Formulation correctly predicts performance of Banshee and Bronzeville Community MG in HIL.
 Metric: match V,f during contingencies
- Co-Design formulation outperforms state-of-the-art plant optimization techniques for 3 optimization goals (lowest cost, 100% renewable and zero inertia). Metric: 10% lower LCOE.
 Final Deliverable
- Field deployment of run time tool in Maywood and MicroC3 (NCSU) MG MG-microgrid; HIL-hardware in the loop; LCOE-levelized cost of energy.

	Quarter	1	2	3	4	5	6	7	8	9	10	11	12
	Co-Design Optimization and Validation												
M0.1	Management Plan Delivererd	Х											
M1.1	Benchmark State-of-the-art MG Design tools		Х										
M1.2	Formulation of the co-design problem				Х								
M1.3	Implementation of a novel iterative algorithm						Х						
	Design Time Toolsuite Development												
M2.1	MG Design-tool architecture defined		Х										
M2.2	Integration of validation tool with co-design algorithm								Х				
M2.3	Final release of the MG design toolsuite											Х	
	Operation Time Toolsuite Development												
M3.1	Implementation of TSN and fault tolerance in RIAPS			х									
	Design for MicroC3 computational & hardware platform							х					
M3.3	Integration of microgrid control algorithms to validation									Х			
M3.4	Implementation of design-time/run-time interface										Х		
	Demonstration												
M4.1	Fully validate DER models using field data					Х							
M4.2	Co-Design Formulation Validation on HIL models						Х						
M4.3	Design-time & run-time tools validation on HIL models										Х		
M4.4	Complete construction of Maywood and MicroC3 MG											Х	
M4.5	Field deployment of run time tool in HW MG												Х
	Technology to Market												
M5.1	T2M Point of Contact	Х											
M5.2	Industry Advisory Board (IAB) Established			Х									
M5.3	Initial T2M plan submitted for ARPA-E acceptance				Х								
M5.4	Updated T2M plan submitted for ARPA-E acceptance								Х				
M5.5	End-of-project T2M report and updated impact sheet												Х