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On the Grid
California Wildfires

Caused by Power Lines
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Top 20 Most Destructive California Wildfires
FIRE NAME (CAUSE) DATE COUNTY ACRES STRUCTURES DEATHS

CAMP ( Bt
TUBBS (Electrical) October 2017 Napa & Sonoma
TUNNEL - Oakland Hills (Rekindle) October 1991 Alameda
CEDAR (Human Related) October 2003 San Diego
NORTH COMPLEX (Lightning) August Butte, Plumas, & Yuba

VALLEY (Electrical) September 2015 Lake, Napa & Sonoma 76,067

an Related) July & asta County, Trinity
GLASS (Undetermined ) September 202 Napa & Sonoma
LNU LIGHTNING COMPLEX August 2020 Napa, Sclano. Sonoma, Yolo, Lake, &
! (Lightning/Arson) Colusa
CZU LIGHTNING COMPLEX (Lightning) August 2020 Santa Cruz, San Mateo
3 NUNS (7
DIXIE (Under Investigaiton)* 2 Butte, Plumas, Lassen. & Tehama
THOMAS I ntur arbar
CALDOR (Human Related) September 2021 Alpine, Amador, & El Dorado
OLD (Human Related) October 2003 San Bernardino

3 BUTTE (7

15 JONES (Undetermined) [~ October

20 AUGUST COMPLEX (Lightning) August 202 Mendocino. Humbeldt, Trinity. Tehama. Glenn.
Lake. & Colusa

California Department of Forestry and Fire Protection (CAL FIRE).




August 2023
Maui, Hawaii Fires




August 2023
Maui, Hawaii Fires

e 101 fatalities, $5.5 billion in damages

8/13/23 Lahai




August 2023
Maui, Hawaii Fires

e 101 fatalities, $5.5 billion in damages

February 2024

Smokehouse Creek Fire

Smoke

Wildfire
perimeters

b Jund

200 mi (
250 km .

~—
3/1/24 Nina Lakhani and Andrew Witherspoon, The Guardian



August 2023
Maui, Hawaii Fires

e 101 fatalities, $5.5 billion in damages

February 2024
Smokehouse Creek Fire

e Largest wildfire in Texas history (1.2 mil. acres)

Smoke
Wildfire
perimeters
R dund
S AT A
\ /
\ el
A /
200 mi \ {
250 km L

~—
3/1/24 Nina Lakhani and Andrew Witherspoon, The Guardian



August 2023 February 2024
Maui, Hawaii Fires Smokehouse Creek Fire
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“We had essentially a fire hurricane": The Governor of Hawail on the inferno that has left
hundreds still missing.
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Maui government files lawsuit, accuses Hawaiian
electric company of causing Lahaina wildfires
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“We had essentially a fire hurricane”: The Governor of Hawall on the inferno that has left
hundreds still missing.

e Largest wildfire in Texas history (1.2 mil. acres)
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Maui, Hawaii Fires Smokehouse Creek Fire

Utility-Caused Wildfires Are Becoming h Texas history (1.2 mil. acres)
a National Problem

e 101 fatalities, $5.5 billig

Climate change is raising the risk of blazes that are started by Smoke
power lines and other utility equipment in many parts of the U.S.
besides California. Wildfire
perimeters
e

 sheretuiarticie | 2> []

lmits it was ‘involved in
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Maui government files lawsuit, acc
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By Samantha Delouya and Kelly McCleary, CNN
© 5 minute read - Updated 9:24 AM EDT, Fri August 25, 2023
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“We had essentially a fire hurricane”: The Governor of Hawa
hundreds still missing.

Workers replaced power lines that the Smokehouse Creek Fire damaged last month in
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e Vegetation contact (2021 Dixie Fire¥)
e Arcing (2012 Utah Wood Hollow Fire 7)
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e High winds, high temperatures,
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1 According to Utah fire marshal’s office



High Wildfire Risk Spark from Power
Conditions Infrastructure

e High winds, high temperatures,

dry vegetation, low humidity

Vegetation contact (2021 Dixie Fire*)
Arcing (2012 Utah Wood Hollow Fire 1)
Faulty equipment (2018 Camp Fire*)
Sagging lines (2018 Cascade Fire*)
Conductor slap (2017 Thomas Fire¥*)

*According to CAL FIRE
1 According to Utah fire marshal’s office
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Wildfire Ignition Prevention Schemes

Category 1: Category 2: Category 3:
Immediate Short-term Long-term hardening
preventative action modifications and planning
e Public Safety Power e Increased vegetation e Fire-resistant poles

Shutoffs (PSPS) events maintenance

Undergrounding

e Increased monitoring Covered conductors

(e.g., sensors, cameras)

Distributed energy

e Fast-trip settings
resources
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Public Safety Power Shutoff (PSPS)

e Proactively de-energize power lines in high-wildfire-risk areas
e Tradeoff between wildfire risk and load shedding

P ~
De-energized Lines: 6

Wildfire Risk J
Load Shedding 1
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e Repeated power outages can compound these repercussions

CALIFORNIA DIVIDE

“We need the food that we lost.” Low-incom

families still reeling from blackou

BY JACKIE BOTTS , NOVEMBER 22, 2019 UPDATED FEBRUARY 27,2020

erate of food across the El Verano Elementary School ya o

Pacific Gas & Electric turned off power to Ana Patricia Rios’ neighborhood in Sonoma
County for eight days in October, three at the beginning of the month and five near the
end. The mother of three young boys watched twice as nearly all of the food in her
refrigerator spoiled. She threw out at least $500 worth of meat, fruit, vegetables,
salsas and other food that would have supplied her family with months of meals.

“It's a big impact because we need the food that we lost,” Rios said in Spanish, two
days after the lights finally came back on.

Similar losses occurred throughout Rios’ wooded, hilly neighborhood, which is mostly
home to Hispanic families. Many are vineyard and hospitality workers, and sometimes
several families share a house.

Making matters worse, last weekend, Rios received a PG&E alert that her family might
be plunged into the dark once again this week. She decided to cook the one package of
meat in her freezer, which is now mostly empty to avoid another colossal loss.




e Negative health, safety, and economic impacts of power outages

e Repeated power outages can compound these repercussions
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e Negative health, safety, and economic impacts of power outages

e Repeated power outages can compound these repercussions

“160,000 instances
of power shutoffs
to customers with
medical needs from
2017 to 2021."

-Associated Press
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e Negative health, safety, and economic impacts of power outages

e Repeated power outages can compound these repercussions

Utility

Outage Start

Outage Duration

Circuit Name

Customers
Impacted

PG&E
PG&E
PG&E
PG&E
PG&E

9/23/2019 17:08
9/25/2019 3:06
10/9/2019 0:45
10/23/2019 14:31
10/26/2019 17:00

0 days, 18 hrs, 3 min
0 days, 13 hrs, 14 min
2 days, 16 hrs, 56 min
1 days, 1 hrs, 44 min
4 days, 0 hrs, 56 min

BIG BEND 1101
BIG BEND 1101
BIG BEND 1101
BIG BEND 1101
BIG BEND 1101

185
185
190
190
189

PG&E
PG&E
PG&E
PG&E
PG&E

9/7/2020 15:34
9/27/2020 4:05
10/14/2020 18:20
10/22/2020 5:08
10/25/2020 14:58

3 days, 2 hrs, 27 min
1days, 12 hrs, 57 min
1 days, 21 hrs, 58 min
1 days, 8 hrs, 24 min
1 days, 22 hrs, 57 min

BIG BEND 1101
BIG BEND 1101
BIG BEND 1101
BIG BEND 1101
BIG BEND 1101

234
237
237
239
239

California Public Utilities Commission (CPUC)*

*PSPS Big Bend 1101 analysis

initially completed by Mark Specht.
https://blog.ucsusa.org/mark-specht
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e Negative health, safety, and economic impacts of power outages

e Repeated power outages can compound these repercussions

Utility

Outage Start

Outage Duration

Circuit Name

Customers
Impacted

September 2019

PG&E
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PG&E
PG&E
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9/23/2019 17:08
9/25/2019 3:06
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9/7/2020 15:34
9/27/2020 4:05
10/14/2020 18:20
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3 days, 2 hrs, 27 min
1days, 12 hrs, 57 min
1 days, 21 hrs, 58 min
1 days, 8 hrs, 24 min
1 days, 22 hrs, 57 min
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California Public Utilities Commission (CPUC)*

2

*PSPS Big Bend 1101 analysis

initially completed by Mark Specht.

https://blog.ucsusa.org/mark-specht



e Negative health, safety, and economic impacts of power outages

e Repeated power outages can compound these repercussions

California Public Utilities Commission (CPUC)*

September 2020
- ) L. Customers | T e
Utility Outage Start Outage Duration Circuit Name
Impacted OO T T rra—T

PG&E |9/23/201917:08 |0 days, 18 hrs, 3min  [BIG BEND 1101 185 FFrFFTrFTF
PG&E |9/25/20193:06  |0days, 13 hrs, 14 min |BIG BEND 1101 185 = m m
PG&E |10/9/20190:45 |2 days, 16 hrs, 56 min [BIG BEND 1101 190 & S |
PG&E |10/23/2019 14:31 |1days, 1 hrs, 44 min  [BIG BEND 1101 190
PG&E |10/26/201917:00 |4 days, O hrs, 56 min  |BIG BEND 1101 189 October 2020
PG&E [9/7/202015:34 |3 days, 2 hrs, 27 min  |BIG BEND 1101 234 | N N e e
PG&E |9/27/2020 4:05 1 days, 12 hrs, 57 min  [BIG BEND 1101 237 I N
PG&E |10/14/2020 18:20 |1 days, 21 hrs, 58 min [BIG BEND 1101 237
PG&E |10/22/20205:08 |1 days, 8 hrs, 24 min  |BIG BEND 1101 239
PG&E |10/25/2020 14:58 |1 days, 22 hrs, 57 min |BIG BEND 1101 239

*PSPS Big Bend 1101 analysis
initially completed by Mark Specht.
. https://blog.ucsusa.org/mark-specht



Hawaii ulility faces scrutiny for not cutting
power to reduce fire risks

Before the Maui wildfires, Hawaiian Electric did not have a plan — adopted widely in
California and other states — to shut off power in certain lines in advance of dangerous winds

By Brianna Sacks

August 12, 2023 at 10:27 a.m. EDT




Hawaii utility faces scrutiny for not cutting
power to reduce fire risks

August 12, 24

'WILDFIRES

It’s official: Power shutoffs underway across Oregon amid
fire danger

Additional power shutoffs are possible through the day
by: Hailey Dunn

Posted: Sep 9, 2022
Updated: gep 9,:

suae ) W QO =

PORTLAND, Ore. (KOIN) — With a red flag warning in effect across Oregon Friday, mass power

shutoffs are happening across the state because of high winds and extreme fire conditions.

Fire danger is expected to rise by Friday afternoon. Gusty winds are forecasted to ramp up with
speeds up to 30-40 mph in Portland and the Willamette Valley. KOIN 6’s meteorologist Natasha

Stenbock says high winds paired with Oregon’s dry, warm weather bolsters fire danger.

| Fire danger, red flag warning in effect across Oregon and Washington »
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WA utilities proactlvely turn off power as wildfires come west
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Xcel Energy prepares for high winds, possible proactive

PORTLAND, Ore.
= power shutoffs, extended outages

shutoffs are hapy

Fire danger is ex by: Dailyn

Updated: Mar 34, 2024 / (2:57 PM CDT
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Wildfire Ignition Prevention Schemes

Category 1: Category 3:
Immediate Long-term hardening
preventative action and planning

e Public Safety Power Fire-resistant poles

Shutoffs (PSPS) events

Undergrounding

Covered conductors

Distributed energy

resources
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Project
Goal:

Optimally select, site, and size infrastructure investments

to support system operations during PSPS events.

Batteries

Line Hardening

43

e Undergrounding

e Covered Conductors
e Vegetation Management

Solar PV

AL
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Optimally select, site, and size infrastructure investments
to support system operations during PSPS events.




Project Optimally select, site, and size infrastructure investments
Goal: to support system operations during PSPS events.

Hardened line
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e Utilities often select lines to de-energize using risk thresholding methods

L

> Wildfire risk parameter: r* = De-energize line ¢ if r’ > risk threshold

e Network-wide optimization outperforms thresholding methods
> De-energization variable: z € {0,1} = z' =1 (Energized), z* = 0 (De-energized)

Balancing Wildfire Risk and Power Outages Through
Optimized Power Shut-Offs

Noah Rhodes ©, Graduate Student Member, IEEE, Lewis Naimo @, and Line Roald @, Member, IEEE
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e Utilities often select lines to de-energize using risk thresholding methods

l

> Wildfire risk parameter: r* = De-energize line ¢ if r’ > risk threshold

e Network-wide optimization outperforms thresholding methods
» De-energization variable: z* € {0,1} = =z’ =1 (Energized), z* = 0 (De-energized)

min « (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables

Bal o o .
™ s.t. Transmission switching constraints (DC power flow)

Noah Rhodes 7, Graduate Student Menber, IEEE, Lewis Naimo ¥, and Line Roald 0, Meniber, IEEE
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e Utilities often select lines to de-energize using risk thresholding methods

0

> Wildfire risk parameter: r* = De-energize line ¢ if r’ > risk threshold

e Network-wide optimization outperforms thresholding methods
» De-energization variable: z* € {0,1} = =z’ =1 (Energized), z* = 0 (De-energized)

min « (Load Shedding) + (1 — «) (Wildfire Risk)
z, operation variables
Bal o I .
™ s.t. Transmission switching constraints (DC power flow)

» Tradeoff parameter: « € [0, 1]
» o =0, Only wildfire risk reduction

» o =1, Only load shedding reduction

> Wildfire Risk = Y. (rz")
£ € Lines

‘A NUMBER
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e Extend to multi-time period

e Incorporate infrastructure
investment decisions

e Place infrastructure based on
worst-case representative
24-hour period

» Consider day with peak demand
» Assign risks to be average of top
10% of historical highest risks

Wildfire risk

Total risk

Network demand

Demand

Hour

24



e Extend to multi-time period

~
2
; Total risk
e Incorporate infrastructure = v
. .. O | Total risk w/ PSPS and investements
investment decisions =
i T T T T T T T T T T T T T T T 1T 17T TT |24
e Place infrastructure based on
worst-case representative
24-hour period -
» Consider day with peak demand s
» Assign risks to be average of top g
°
10% of historical highest risks < Demand
o
2
-
3]
=2
Load shed
R i

Hour



e Extend to multi-time period

Total risk

4
Total risk w/ PSPS and investements

e Incorporate infrastructure

Wildfire risk

investment decisions

e Place infrastructure based on
worst-case representative
24-hour period

» Consider day with peak demand
» Assign risks to be average of top
10% of historical highest risks Demand

e Test infrastructure decisions on

Network demand

sequential simulation of the Load shed

2021 wildfire season 1 H 24
our




Problem Formulation

min a (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables
infrastructure variables

s.t. Transmission switching constraints (DC power flow)
Line hardening/management constraints
Battery constraints
PV solar constraints
Budget constraint




Problem Formulation

min a (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables
infrastructure variables

s.t. Transmission switching constraints (DC power flow)
Line hardening/management constraints
Battery constraints
PV solar constraints
Budget constraint

>~ 3" load shed S - ByY)

hour bus + (1 o a) line

Objective function = «
total demand

total risk

~~ ~ ~~
Load Shedding Wildfire Risk

14
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min a (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables
infrastructure variables

s.t. Transmission switching constraints (DC power flow)
Line hardening/management constraints
Battery constraints
PV solar constraints

Budget constraint

e Line hardening variable: y* € {0,1}
e Hardening risk reduction 8 € [0, 1]



Problem Formulation

min a (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables
infrastructure variables

s.t. Transmission switching constraints (DC power flow)
Line hardening/management constraints
Battery constraints
PV solar constraints

Budget constraint

e Line hardening variable: y* € {0,1} Method 3 Reference
e Hardening risk reduction S € [0, 1] undergrounding 10 chuc
covered conductors 0.5 CPUC, WECC
vegetation management | 0.25 | PG&E, Palaiologou 2018

Palaiologou, et al. “Using transboundary wildfire exposure assessments to improve fire management programs: a case study in

Greece.” International Journal of Wildland Fire (2018).
15



Problem Formulation

min a (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables
infrastructure variables

s.t. Transmission switching constraints (DC power flow)
Line hardening/management constraints
Battery constraints
PV solar constraints

Budget constraint

e Line hardening variable: y* € {0,1} Method 3 Reference
e Hardening risk reduction S € [0, 1] undergrounding 10 chuc
. ) covered conductors 0.5 CPUC, WECC
® Harden/manage entire line vegetation management | 0.25 | PG&E, Palaiologou 2018

Taylor, Sofia, and Line A. Roald. “A framework for risk assessment and optimal line upgrade selection to mitigate wildfire risk.”

Electric Power Systems Research (2022).
15
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min a (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables
infrastructure variables

s.t. Transmission switching constraints (DC power flow)
Line hardening/management constraints
Battery constraints
PV solar constraints
Budget constraint

e Standard mixed-integer linear battery model

» Variables for battery placement, state, charge and discharge



Problem Formulation

min a (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables
infrastructure variables

s.t. Transmission switching constraints (DC power flow)
Line hardening/management constraints
Battery constraints
PV solar constraints
Budget constraint

e Standard mixed-integer linear battery model

» Variables for battery placement, state, charge and discharge

e Solar output per location, hour and day using NREL's PVWatts calculator




Problem Formulation

min a (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables
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Problem Formulation

min
z, operation variables
infrastructure variables

s.t.

a (Load Shedding) + (1 — «) (Wildfire Risk)

Transmission switching constraints (DC power flow)
Line hardening/management constraints

Battery constraints

PV solar constraints

Budget constraint

e Consider range
of budgets:
$100M to $1B




Problem Formulation

min a (Load Shedding) + (1 — «) (Wildfire Risk)

z, operation variables
infrastructure variables

s.t. Transmission switching constraints (DC power flow)
Line hardening/management constraints
Battery constraints
PV solar constraints
Budget constraint

Infrastructure Cost Reference
e Consider range battery? $20 million per battery NREL
solar PV? $940 per 1-kW-DC array NREL
of budgets: . - .
undergrounding $3 million per mile CPUC, PSC of WI
$100M to $1B covered conductors $0.5 million per mile CPUC, MISO
vegetation management3| $0.01 million per mile LREC

1100 MWh lithium-ion grid-scale battery.
2 Fixed-tilt, utility-scale PV system.
3 Over a 20 year period. 17



Test Cases

RTS-GMLC API WECC-240

73 buses, 120 lines, 99 generators 240 buses, 448 lines, 143 generators
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Test Cases

June 1, 2021

RTS-GMLC API

73 buses, 120 lines, 99 generators

e Risks r assigned using USGS Wind-enhanced Fire Potential Index



Test Cases

June 1, 2021

RTS-GMLC API

73 buses, 120 lines, 99 generators

e Risks r assigned using USGS Wind-enhanced Fire Potential Index

e Evaluate 3 cases:

1. solar + batteries + enhanced vegetation management
2. solar + batteries + covered conductors
3. solar + batteries + undergrounding

18



Infrastructure Placements

a=0.2 .
load shed solar PV bz ]
load shed=17.0 %, remaining risk=3.0 % oac e o attertes

e Covered conductors, $500M
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a=0.2 .
load shed solar PV bz ]
load shed=17.0 %, remaining risk=3.0 % oac e o attertes

e Covered conductors, $500M

strongly
prioritize wildfire
risk reduction




Infrastructure Placements

a=0.5 .
load shed solar PV bz ]
load shed=4.0 %, remaining risk=10.0 % oac e o attertes

e Covered conductors, $500M

evenly weight
wildfire risk
and
load shedding




Infrastructure Placements

a=0.8 .
load shed solar PV b. 5
load shed=0.0 %, remaining risk=17.0 % oac e o atteries

e Covered conductors, $500M

strongly
prioritize load

shedding reduction




Infrastructure Placements

a=0.8 .
load shed solar PV bz ]
load shed=0.0 %, remaining risk=17.0 % oac e o attertes

e Covered conductors, $500M

e Many lines de-energized

» Network extremely robust
» 99 generators, 73 buses




Infrastructure Placements

a=0.8 .
load shed solar PV bz ]
load shed=0.0 %, remaining risk=17.0 % oac e o attertes

e Covered conductors, $500M

e Many lines de-energized

» Network extremely robust
» 99 generators, 73 buses

e Selection, siting, and sizes
change based on «
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® Most improvement via
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Long-Duration Battery Investment Using Distributed Optimization

[Piansky, R., Stinchfield, G., Kody, A., Molzahn, D.K. and Watson. J.P. (2024). “Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging"]
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Long-Duration Battery Investment Using Distributed Optimization

High
Wildfire
Risk

[Piansky, R., Stinchfield, G., Kody, A., Molzahn, D.K. and Watson. J.P. (2024). “Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging"]
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Long-Duration Battery Investment Using Distributed Optimization

High
Wildfire §
Risk

[ I |

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

[Piansky, R., Stinchfield, G., Kody, A., Molzahn, D.K. and Watson. J.P. (2024). “Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging"]
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Long-Duration Battery Investment Using Distributed Optimization

| May Dec

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

! ! ! ! ! !

Enforce Coupling Constraints

[Piansky, R., Stinchfield, G., Kody, A., Molzahn, D.K. and Watson. J.P. (2024). “Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging"]
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Long-Duration Battery Investment Using Distributed Optimization

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

! ! ! ! ! !

Enforce Coupling Constraints

Gr Georgia Institute
of Technology.
[Piansky, R., Stinchfield, G., Kody, A., Molzahn, D.K. and Watson. J.P. (2024). “Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging"]
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[Piansky, R., Stinchfield, G., Kody, A., Molzahn, D.K. and Watson. J.P. (2024). “Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging"]
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Long-Duration Battery Investment Using Distributed Optimization
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Period 1 Period 2 Period 3 Period 4 Period 5 Period 6
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Enforce Coupling Constraints

£ Al Institute for Advances
in Optimization

Gr Georgia Institute Lawrence Livermore
of Technology National Laboratory

[Piansky, R., Stinchfield, G., Kody, A., Molzahn, D.K. and Watson. J.P. (2024). “Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging"]
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Battery Placements on WECC Network

April 2021
(no wildfire risk)

I e—
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Battery Placements on WECC Network

April 2021 June 2021
(no wildfire risk) (wildfire risk)

K — 1
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Battery Placements on WECC Network

April 2021 June 2021 Full 2021 Year
(no wildfire risk) (wildfire risk) (multi-use)

K — 1
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Undergrounding Selections in Accordance with the Justice40 Initiative

Justice40 Image: LeSar Development Consultants 24
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Undergrounding Selections in Accordance with the Justice40 Initiative
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“...directs 40% of the overall
benefits of certain Federal
investments... to flow to
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-DOE
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Load Shedding and Disadvantaged Communities
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Load Shedding and Disadvantaged Communities

W Justice40
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e Majority of load shedding due to PSPS events occur in circled regions
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Load Shedding and Disadvantaged Communities
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B Justice40
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e Majority of load shedding due to PSPS events occur in circled regions

e Exploring how to capture the vulnerability of these areas, and how

to select undergrounded power lines
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Investment in Wildfire Risk Mitigation

e Utility: PG&E undergrounding plan
» 10,000 miles of power lines

PG&E Aims to Curb Wildfire Risk by
Burying Many Power Lines

The California utility said the work would involve about 10,000
miles of its network, a project potentially costing tens of billions of
dollars.

& aivethisaricle A []




Investment in Wildfire Risk Mitigation

o Utility: PG&E undergrounding plan
» 10,000 miles of power lines

e State: California Wildfire Investment

» $536 million for wildfire resilience

PG&E Aims to Curb Wildfire Risk by
Burying Many Power Lines

The California utility said the work would involve about 10,000

) Office of Governor
>/ GAVIN NEWSOM

Home About+ Newsroom Appointments+

Governor Newsom Signs Landmark $536 Million Wildfire
Package Accelerating Projects to Protect High-Risk
Communities

Published: Apr 13,2021

Governor and legislative leaders tour fuels management project that helped protect a Butte County community from last
year’s North Complex Fire

Early action funding invests in wildfire resilience projects including forest management, fuel breaks and hardening
infrastructure in high-risk communities

Early budget action builds on the Governor’s announcement last week of an expanded state task force to deliver on key
commitments of the Wildfire and Forest Resilience Action Plan

OROVILLE EAST- Ahead of peak fire season, Governor Gavin Newsom today signed a $536 million wildfire package enabling
the state to take urgent action on projects that support wildfire suppression, improve forest health and build resilience in
communities to help protect residents and property from catastrophic wildfires in diverse landscapes across the state. The
Governor signed SB 85 alongside legislative leaders at a fuels management project in the Lake Oroville State Recreation Area
that helped protect a Butte County community from last year’s North Complex Fire.

The legislative package builds on Governor Newsom's early action funding for wildfire resilience proposed in his 2021-2022
state budget. It funds projects to restore the ecological health of forests and watersheds, fuel breaks around vulnerable
communities, statewide fire prevention grants targeting projects to advance community hardening, and improvements to
defesiblesimestomittiomswikiie damme: Thisesriysctonnizn s nacol theGovernors ovesll popased Subillan.




Investment in Wildfire Risk Mitigation

o Utility: PG&E undergrounding plan
» 10,000 miles of power lines

e State: California Wildfire Investment

» $536 million for wildfire resilience

e Federal: Infrastructure Bill

» $5 billion harden against extreme

weather events

PG&E Aims to Curb Wildfire Risk by
Burying Many Power Lines

The California utility said the work would involve about 10,000

Office of Governor

GAVIN NEWSOM

Home About+ Newsroom Appointments+

Governor Newsom Signs Landmark $536 Million Wildfire
Package Accelerating Projects to Protect High-Risk
Communities

Biden signs the $1 trillion bipartisan
infrastructure bill into law

ated November 15, 2021 - 7:15 PM ET

BRIAN NAYLOR | & I DEIRDRE WALSH




Investment in Wildfire Risk Mitigation

o Utility: PG&E undergrounding plan
» 10,000 miles of power lines

e State: California Wildfire Investment

» $536 million for wildfire resilience

e Federal: Infrastructure Bill

» $5 billion harden against extreme

weather events

How should we invest in
infrastructure to reduce
wildfire ignition risk
and load shedding?

PG&E Aims to Curb Wildfire Risk by
Burying Many Power Lines

The California utility said the work would involve about 10,000

Office of Governor

GAVIN NEWSOM

Home About+ Newsroom Appointments+

Governor Newsom Signs Landmark $536 Million Wildfire
Package Accelerating Projects to Protect High-Risk
Communities

Biden signs the $1 trillion bipartisan
infrastructure bill into law

ovember 15, 2021 - 7:15 PM ET
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normalized network wildfire risk
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normalized network wildfire risk
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