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• Vegetation contact (2021 Dixie Fire* )

• Arcing (2012 Utah Wood Hollow Fire †)
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• Sagging lines (2018 Cascade Fire* )

• Conductor slap (2017 Thomas Fire* )*According to CAL FIRE

† According to Utah fire marshal’s office
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Public Safety Power Shutoff (PSPS)

• Proactively de-energize power lines in high-wildfire-risk areas

• Tradeoff between wildfire risk and load shedding

De-energized Lines: 6

Wildfire Risk ↓

Load Shedding ↑
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• Negative health, safety, and economic impacts of power outages

• Repeated power outages can compound these repercussions

“160,000 instances

of power shutoffs

to customers with

medical needs from

2017 to 2021.”

-Associated Press
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• Negative health, safety, and economic impacts of power outages

• Repeated power outages can compound these repercussions

Utility Outage Start Outage Duration Circuit Name
Customers 

Impacted

PG&E 9/23/2019 17:08 0 days, 18 hrs, 3 min BIG BEND 1101 185

PG&E 9/25/2019 3:06 0 days, 13 hrs, 14 min BIG BEND 1101 185

PG&E 10/9/2019 0:45 2 days, 16 hrs, 56 min BIG BEND 1101 190

PG&E 10/23/2019 14:31 1 days, 1 hrs, 44 min BIG BEND 1101 190

PG&E 10/26/2019 17:00 4 days, 0 hrs, 56 min BIG BEND 1101 189

PG&E 9/7/2020 15:34 3 days, 2 hrs, 27 min BIG BEND 1101 234

PG&E 9/27/2020 4:05 1 days, 12 hrs, 57 min BIG BEND 1101 237

PG&E 10/14/2020 18:20 1 days, 21 hrs, 58 min BIG BEND 1101 237

PG&E 10/22/2020 5:08 1 days, 8 hrs, 24 min BIG BEND 1101 239

PG&E 10/25/2020 14:58 1 days, 22 hrs, 57 min BIG BEND 1101 239

PG&E 8/17/2021 19:20 1 days, 15 hrs, 34 min BIG BEND 1101 259California Public Utilities Commission (CPUC)*

*PSPS Big Bend 1101 analysis

initially completed by Mark Specht.

https://blog.ucsusa.org/mark-specht
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Project
Goal:

Optimally select, site, and size infrastructure investments

to support system operations during PSPS events.

Hardened lineHardened line



11

• Utilities often select lines to de-energize using risk thresholding methods



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold

• Network-wide optimization outperforms thresholding methods



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold

• Network-wide optimization outperforms thresholding methods



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold

• Network-wide optimization outperforms thresholding methods
▶ De-energization variable: zℓ ∈ {0, 1}



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold

• Network-wide optimization outperforms thresholding methods
▶ De-energization variable: zℓ ∈ {0, 1} =⇒ z

ℓ = 1 (Energized), zℓ = 0 (De-energized)



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold

• Network-wide optimization outperforms thresholding methods
▶ De-energization variable: zℓ ∈ {0, 1} =⇒ z

ℓ = 1 (Energized), zℓ = 0 (De-energized)

min
z, operation variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold

• Network-wide optimization outperforms thresholding methods
▶ De-energization variable: zℓ ∈ {0, 1} =⇒ z

ℓ = 1 (Energized), zℓ = 0 (De-energized)

min
z, operation variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

▶ Tradeoff parameter: α ∈ [0, 1]



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold

• Network-wide optimization outperforms thresholding methods
▶ De-energization variable: zℓ ∈ {0, 1} =⇒ z

ℓ = 1 (Energized), zℓ = 0 (De-energized)

min
z, operation variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

▶ Tradeoff parameter: α ∈ [0, 1]
▶ α = 0, Only wildfire risk reduction



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold

• Network-wide optimization outperforms thresholding methods
▶ De-energization variable: zℓ ∈ {0, 1} =⇒ z

ℓ = 1 (Energized), zℓ = 0 (De-energized)

min
z, operation variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

▶ Tradeoff parameter: α ∈ [0, 1]
▶ α = 0, Only wildfire risk reduction

▶ α = 1, Only load shedding reduction



11

• Utilities often select lines to de-energize using risk thresholding methods
▶ Wildfire risk parameter: r ℓ =⇒ De-energize line ℓ if r ℓ > risk threshold

• Network-wide optimization outperforms thresholding methods
▶ De-energization variable: zℓ ∈ {0, 1} =⇒ z

ℓ = 1 (Energized), zℓ = 0 (De-energized)
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z, operation variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

▶ Tradeoff parameter: α ∈ [0, 1]
▶ α = 0, Only wildfire risk reduction

▶ α = 1, Only load shedding reduction

▶ Wildfire Risk =
∑

ℓ∈ Lines

(r ℓzℓ)
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• Extend to multi-time period

• Incorporate infrastructure

investment decisions

• Place infrastructure based on
worst-case representative
24-hour period
▶ Consider day with peak demand

▶ Assign risks to be average of top

10% of historical highest risks

• Test infrastructure decisions on

sequential simulation of the

2021 wildfire season
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min
z, operation variables
infrastructure variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

Line hardening/management constraints

Battery constraints

PV solar constraints

Budget constraint

Objective function = α





∑

hour

∑

bus

load shed

total demand



+ (1− α)





∑

line

r
ℓ(z ℓ − βy ℓ)

total risk





Load Shedding Wildfire Risk
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min
z, operation variables
infrastructure variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

Line hardening/management constraints

Battery constraints

PV solar constraints

Budget constraint

Method β Reference

undergrounding 1.0 CPUC

covered conductors 0.5 CPUC, WECC

vegetation management 0.25 PG&E, Palaiologou 2018

• Line hardening variable: y ℓ ∈ {0, 1}

• Hardening risk reduction β ∈ [0, 1]

Palaiologou, et al. “Using transboundary wildfire exposure assessments to improve fire management programs: a case study in

Greece.” International Journal of Wildland Fire (2018).
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min
z, operation variables
infrastructure variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

Line hardening/management constraints

Battery constraints

PV solar constraints

Budget constraint

Method β Reference

undergrounding 1.0 CPUC

covered conductors 0.5 CPUC, WECC

vegetation management 0.25 PG&E, Palaiologou 2018

• Line hardening variable: y ℓ ∈ {0, 1}

• Hardening risk reduction β ∈ [0, 1]

• Harden/manage entire line

Taylor, Sofia, and Line A. Roald. “A framework for risk assessment and optimal line upgrade selection to mitigate wildfire risk.”

Electric Power Systems Research (2022).
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min
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infrastructure variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

Line hardening/management constraints

Battery constraints

PV solar constraints

Budget constraint

• Standard mixed-integer linear battery model

▶ Variables for battery placement, state, charge and discharge

• Solar output per location, hour and day using NREL’s PVWatts calculator



Problem Formulation

17

min
z, operation variables
infrastructure variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

Line hardening/management constraints

Battery constraints

PV solar constraints

Budget constraint



Problem Formulation

17

min
z, operation variables
infrastructure variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

Line hardening/management constraints

Battery constraints

PV solar constraints

Budget constraint

• Consider range

of budgets:

$100M to $1B



Problem Formulation

17

min
z, operation variables
infrastructure variables

α (Load Shedding) + (1− α) (Wildfire Risk)

s.t. Transmission switching constraints (DC power flow)

Line hardening/management constraints

Battery constraints

PV solar constraints

Budget constraint

• Consider range

of budgets:

$100M to $1B

Infrastructure Cost Reference

battery1 $20 million per battery NREL

solar PV2 $940 per 1-kW-DC array NREL

undergrounding $3 million per mile CPUC, PSC of WI

covered conductors $0.5 million per mile CPUC, MISO

vegetation management3 $0.01 million per mile LREC

1 100 MWh lithium-ion grid-scale battery.
2 Fixed-tilt, utility-scale PV system.
3 Over a 20 year period.
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Test Cases

18

RTS-GMLC API

73 buses, 120 lines, 99 generators

• Risks r ℓ assigned using USGS Wind-enhanced Fire Potential Index

• Evaluate 3 cases:

1. solar + batteries + enhanced vegetation management

2. solar + batteries + covered conductors

3. solar + batteries + undergrounding
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• Covered conductors, $500M

• Many lines de-energized

▶ Network extremely robust

▶ 99 generators, 73 buses

• Selection, siting, and sizes

change based on α
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20

Low α,
prioritize wildfire
risk reduction

High α,
prioritize load
shed reduction

better performance

• Budget = $500M

• Most improvement via

line hardening or

management measures

• Combinations of

investments driven

mostly by line hardening

or management
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Budget Trade-off Curves

21

Low α,
prioritize wildfire
risk reduction

High α,
prioritize load
shed reduction

Increasing budgets

• Curves based on

season-long simulation

• Most “bang for your

buck” if undergrounding

power lines
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Long-Duration Battery Investment Using Distributed Optimization

[Piansky, R., Stinchfield, G., Kody, A., Molzahn, D.K. and Watson. J.P. (2024). “Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging”]
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Battery Placements on WECC Network

April 2021

(no wildfire risk)

June 2021

(wildfire risk)

Full 2021 Year

(multi-use)
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Load Shedding and Disadvantaged Communities

• Majority of load shedding due to PSPS events occur in circled regions

• Exploring how to capture the vulnerability of these areas, and how

to select undergrounded power lines
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Thank You
aakody@ncsu.edu

Pok Rie/pexels.com
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Investment in Wildfire Risk Mitigation

27

• Utility: PG&E undergrounding plan

▶ 10,000 miles of power lines

• State: California Wildfire Investment

▶ $536 million for wildfire resilience

• Federal: Infrastructure Bill

▶ $5 billion harden against extreme

weather events

How should we invest in

infrastructure to reduce

wildfire ignition risk

and load shedding?



2021 Wildfire Season Simulation

28

• $500M Budget, α = 0.8



2021 Wildfire Season Simulation

28

Date in 2021 season

• $500M Budget, α = 0.8



2021 Wildfire Season Simulation

28

PSPS trigger threshold

Date in 2021 season

• $500M Budget, α = 0.8



2021 Wildfire Season Simulation

28

PSPS trigger threshold

Date in 2021 season

• $500M Budget, α = 0.8

• Threshold: network risk

in 75% percentile of

historical risks



2021 Wildfire Season Simulation

28

PSPS trigger threshold

Date in 2021 season

PSPS event

• $500M Budget, α = 0.8

• Threshold: network risk

in 75% percentile of

historical risks



2021 Wildfire Season Simulation

28

PSPS trigger threshold

Date in 2021 season

PSPS event

• $500M Budget, α = 0.8

• Threshold: network risk

in 75% percentile of

historical risks



2021 Wildfire Season Simulation

28

PSPS trigger threshold

Date in 2021 season

PSPS event

• $500M Budget, α = 0.8

• Threshold: network risk

in 75% percentile of

historical risks



2021 Wildfire Season Simulation

28

PSPS trigger threshold

Date in 2021 season

PSPS event

• $500M Budget, α = 0.8

• Threshold: network risk

in 75% percentile of

historical risks



2021 Wildfire Season Simulation

28

PSPS trigger threshold

Date in 2021 season

PSPS event

• $500M Budget, α = 0.8

• Threshold: network risk

in 75% percentile of

historical risks



Budget Breakdown

29

Line hardening/management Solar PV Batteries



Budget Breakdown

29

Line hardening/management Solar PV Batteries

Low α,
prioritize wildfire

risk reduction



Budget Breakdown

29

Line hardening/management Solar PV Batteries

Low α,
prioritize wildfire

risk reduction

High α,
prioritize load
shed reduction



Budget Breakdown

29

Line hardening/management Solar PV Batteries

Low α,
prioritize wildfire

risk reduction

High α,
prioritize load
shed reduction



Budget Breakdown

29

Line hardening/management Solar PV Batteries

Low α,
prioritize wildfire

risk reduction

High α,
prioritize load
shed reduction



Budget Breakdown

29

Line hardening/management Solar PV Batteries

Low α,
prioritize wildfire

risk reduction

High α,
prioritize load
shed reduction

1. Almost entire budget on undergrounding



Budget Breakdown

29

Line hardening/management Solar PV Batteries

Low α,
prioritize wildfire

risk reduction

High α,
prioritize load
shed reduction

2. Low α ⇒ de-energizing reduces risk more



Budget Breakdown

29

Line hardening/management Solar PV Batteries

Low α,
prioritize wildfire

risk reduction

High α,
prioritize load
shed reduction

3. High α ⇒ connectivity makes batteries more useful


